• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 8
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 38
  • 34
  • 23
  • 20
  • 17
  • 17
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An investigation into the performance of a Rankine-heat pump combined cycle / Stephanus Phillipus Oelofse.

Oelofse, Stephanus Phillipus January 2012 (has links)
The global growth in electricity consumption and the shortcomings of renewable electricity generation technologies are some of the reasons why it is still relevant to evaluate the performance of power conversion technologies that are used in fossil fuel power stations. The power conversion technology that is widely used in fossil fuel power stations is the Rankine cycle. The goal of this study was to determine if the efficiency of a typical Rankine cycle can be improved by adding a heat pump as a bottoming cycle. Three simulation models were developed to perform this evaluation. The first is a simulation model of a Rankine cycle. A quite detailed Rankine cycle configuration was evaluated. The simulation model was used to determine the heating requirements of the heat pump cycle as well as its operating temperature ranges. The efficiency of this Rankine cycle was calculated as 43.05 %. A basic vapour compression cycle configuration was selected as the heat pump of the combined cycle. A simulation model of the vapour compression cycle and the interfaces with the Rankine cycle was developed as the second simulation model. Working fluids that are typically used in vapour compression cycles cannot be used for this application, due to temperature limitations. The vapour compression cycle’s simulation model was therefore also used to calculate the coefficient of performance (COP) for various working fluids in order to select a suitable working fluid. The best cycle COP (3.015 heating) was obtained with ethanol as working fluid. These simulation models were combined to form the simulation model of the Rankine-heat pump combined cycle. This model was used to evaluate the performance of the combined cycle for two different compressor power sources. This study showed that the concept of using steam turbine or electrical power to drive a compressor driven vapour compression cycle in the configuration proposed here does not improve the overall efficiency of the cycle. The reasons for this were discovered and warrant future investigation. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
22

An investigation into the performance of a Rankine-heat pump combined cycle / Stephanus Phillipus Oelofse.

Oelofse, Stephanus Phillipus January 2012 (has links)
The global growth in electricity consumption and the shortcomings of renewable electricity generation technologies are some of the reasons why it is still relevant to evaluate the performance of power conversion technologies that are used in fossil fuel power stations. The power conversion technology that is widely used in fossil fuel power stations is the Rankine cycle. The goal of this study was to determine if the efficiency of a typical Rankine cycle can be improved by adding a heat pump as a bottoming cycle. Three simulation models were developed to perform this evaluation. The first is a simulation model of a Rankine cycle. A quite detailed Rankine cycle configuration was evaluated. The simulation model was used to determine the heating requirements of the heat pump cycle as well as its operating temperature ranges. The efficiency of this Rankine cycle was calculated as 43.05 %. A basic vapour compression cycle configuration was selected as the heat pump of the combined cycle. A simulation model of the vapour compression cycle and the interfaces with the Rankine cycle was developed as the second simulation model. Working fluids that are typically used in vapour compression cycles cannot be used for this application, due to temperature limitations. The vapour compression cycle’s simulation model was therefore also used to calculate the coefficient of performance (COP) for various working fluids in order to select a suitable working fluid. The best cycle COP (3.015 heating) was obtained with ethanol as working fluid. These simulation models were combined to form the simulation model of the Rankine-heat pump combined cycle. This model was used to evaluate the performance of the combined cycle for two different compressor power sources. This study showed that the concept of using steam turbine or electrical power to drive a compressor driven vapour compression cycle in the configuration proposed here does not improve the overall efficiency of the cycle. The reasons for this were discovered and warrant future investigation. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
23

Assessing biomass-fired gas turbine power plants: a techno-economic and environmental perspective

Ihiabe, Daniel 07 1900 (has links)
Fossil fuels continue to deplete with use as they are irreplaceable. In addition, the environmental impact with the continuous use of these conventional fuels has generated global concern due to the production of harmful emission gases. An alternative source of energy has become inevitable. Technological advancements in the area of biomass use for both aviation and power generation are at different levels of development. There is however the need for an integrated approach to assess gas turbine engine behaviour in terms of performance, emission and economics when they are running on biofuels. The current research work is concerned with finding alternative fuel resources for use on stationary gas turbine engines for power generation with the necessary identification of suitable biofuels using a multidisciplinary approach. A techno-economic, environmental and risk assessment (TERA) model comprising the performance, emissions, economics and risk modules has been developed. There had been several simulations of two gas turbine engines (GTEs) to ascertain the effects of both ambient and operating conditions and the effect of fuel types on the engines. These simulations were done with the use of an in-house code-the Turbomatch and a code developed for the steam cycle which is employed for the combined cycle simulation. Cont/d.
24

Utilization Of Natural Gas, Optimization Of Cogeneration/ Combined Cycle Applications In Campus Environment

Ozgirgin, Ekin 01 June 2004 (has links) (PDF)
A computer program, called &ldquo / Cogeneration Design&quot / is developed using Visual Basic 6.0, for conceptually designing cogeneration power plants. Design is focused on power plants to be built in university campuses, where there is mainly heating, hot water, electricity and sometimes cooling demands. Middle East Technical University campus is considered as the primary working area. Before the conceptual design study, detailed information regarding description of the campus, infrastructure, annual electric, water and heat demand covering last 10 years, properties of existing heat plant including natural gas expenses and specifications of the steam distribution pipes and electricity grid are collected and examined in detail. Throughout the thesis, eight different natural gas fired cogeneration power plant designs are developed regarding different gas turbine and steam turbine configurations, for METU Campus, considering the Campus&#039 / properties described above, by using the &quot / Cogeneration Design&quot / program. Then, by means of a thermoeconomic optimization process, cost summary reports are prepared and the feasibility of the designed cogeneration power plants are discussed.
25

Exergy Analysis Of Combined Cycle Cogeneration Systems

Colpan, Can Ozgur 01 May 2005 (has links) (PDF)
In this thesis, several configurations of combined cycle cogeneration systems proposed by the author and an existing system, the Bilkent Combined Cycle Cogeneration Plant, are investigated by energy, exergy and thermoeconomic analyses. In each of these configurations, varying steam demand is considered rather than fixed steam demand. Basic thermodynamic properties of the systems are determined by energy analysis utilizing main operation conditions. Exergy destructions within the system and exergy losses to environment are investigated to determine thermodynamic inefficiencies in the system and to assist in guiding future improvements in the plant. Among the different approaches for thermoeconomic analysis in literature, SPECO method is applied. Since the systems have more than one product (process steam and electrical power), systems are divided into several subsystems and cost balances are applied together with the auxiliary equations. Hence, cost of each product is calculated. Comparison of the configurations in terms of performance assessment parameters and costs per unit of exergy are also given in this thesis.
26

Performance improvements to a fast internally circulating fluidized bed (FICFB) biomass gasifier for combined heat and power plants : a thesis submitted in partial fulfilment for the degree of Master of Engineering in Chemical and Process Engineering, University of Canterbury, New Zealand /

Bull, Doug. January 2008 (has links)
Thesis (M.E.)--University of Canterbury, 2008. / Typescript (photocopy). Includes bibliographical references (p. 194-196). Also available via the World Wide Web.
27

An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation.

Lin, TsungPo January 2008 (has links)
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dimitri Mavris; Committee Member: Erwing Calleros; Committee Member: Hongmei Chen; Committee Member: Mark Waters; Committee Member: Vitali Volovoi.
28

Study of power plant with carbon dioxide capture ability through modelling and simulation

Biliyok, Chechet January 2013 (has links)
With an increased urgency for global action towards climate change mitigation, this research was undertaken with the aim of evaluating post-combustion CO2 capture as an emission abatement strategy for gas-fired power plants. A dynamic rate-based model of a capture plant with MEA solvent was built, with imposed chemical equilibrium, and validated at pilot scale under transient conditions. The model predicted plant behaviour under multiple process inputs and disturbances. The validated model was next used to analyse the process and it was found that CO2 absorption is mass transfer limited. The model was then improved by explicitly adding reactions rate in the model continuity, the first such dynamic model to be reported for the capture process. The model is again validated and is observed to provide better predictions than the previous model. Next, high fidelity models of a gas-fired power plant, a scaled-up capture plant and a compression train were built and integrated for 90% CO2 capture. Steam for solvent regeneration is extracted from the power plant IP/LP crossover pipe. Net efficiency drops from 59% to 49%, with increased cooling water demand. A 40% exhaust gas recirculation resulted in a recovery of 1% efficiency, proving that enhanced mass transfer in the capture plant reduces solvent regeneration energy demands. Economic analysis reveals that overnight cost increases by 58% with CO2 capture, and cost of electricity by 30%. While this discourages deployment of capture technology, natural gas prices remain the largest driver for cost of electricity. Other integration approaches – using a dedicated boiler and steam extraction from the LP steam drum – were explored for operational flexibility, and their net efficiencies were found to be 40 and 45% respectively. Supplementary firing of exhaust gas may be a viable option for retrofit, as it is shown to minimise integrated plant output losses at a net efficiency of 43.5%. Areas identified for further study are solvent substitution, integrated plant part load operation, flexible control and use of rotating packed beds for CO2 capture.
29

Analise técnica e econômica para seleção de sistemas de cogeração em ciclo combinado /

Mogawer, Tamer. January 2005 (has links)
Resumo: O setor elétrico brasileiro vem continuamente passando por crises energéticas; os consumidores, indústrias que dependem de energia para exercerem as suas atividades passaram a valorizar e a buscar fontes alternativas, confiáveis e ecologicamente adequadas com o objetivo de garantir o fornecimento de eletricidade de forma econômica, possibilitando desta maneira uma certa independência energética. Neste contexto, este trabalho tem a finalidade de selecionar sistemas de cogeração utilizando ciclos combinados com conjuntos a gás associadas a caldeira de recuperação sem queima suplementar e turbina a vapor, assim como realizar o levantamento das curvas de produção de energia e eficiência para os ciclos obtidos. Foram utilizados os parâmetros técnicos e construtivos das turbinas a gás e a vapor de uma mesma empresa fabricante, e através das curvas obtidas é possível selecionar o ciclo combinado mais adequado para cada situação desejada, tanto do ponto de vista energético quanto do ponto de vista econômico. / Abstract: The electric Brazilian sector is continually subject to energy crisis, the industrial consumers, that depends on energy to do its activities, is nowadays up to valorize and to look for alternative, trustful and environmental appropriate sources with the objective of guaranteeing the supply of electricity in an economic way and warranting a certain energy independence. In this context, this work has the purpose of selecting cogeneration systems based on using combined cycles with gas turbines associated to heat recovery steam generators without supplementary burners and steam turbines, as well as accomplishing the rising of the curves of production of energy and efficiency for the obtained cycles. The technical and constructive parameters of the gas and steam turbines were considered from the same manufacturing company, and through the obtained curves it is possible to select the more appropriate cycle for each process requirement, in the energy and economic point of view. / Orientador: Júlio Santana Antunes / Coorientador: José Luz Silveira / Banca: José Antonio Perrella Balestieri / Banca: Valdir Apolinario de Freitas / Mestre
30

Energetický paroplynový zdroj na bázi spalování hutnických plynů / Gas steam cycle power plant using metelurgic gas

Kysel, Stanislav January 2011 (has links)
The main goal of my thesis is to carry out thermic calculations for adjusted conditions of electric and heat energy consumption. The power of the generator is 330 MW. In the proposal, you can find combustion trubines type GE 9171E. Steam-gas power plant is designed to combust metallurgical gases. Effort of the thesis focuses also on giving a new informations about trends in combinated production of electric and heat energy.

Page generated in 0.0529 seconds