Spelling suggestions: "subject:"combined cycle"" "subject:"eombined cycle""
51 |
Determinação do custo de energia gerada através da utilização de células a combustível de carbonato fundido e turbina a vapor em um ciclo combinado / Determination of the cost of energy of a combined cycle using molten carbonate fuel cell and steam turbineSilva, Fellipe Sartori da [UNESP] 07 February 2018 (has links)
Submitted by Fellipe Sartori da Silva null (fellipe_sartori@yahoo.com) on 2018-03-20T14:29:37Z
No. of bitstreams: 1
Determinação do custo de energia gerada através da utilização de células a combustível de carbonato fundido e turbina a vapor em um ciclo combinado.pdf: 3065864 bytes, checksum: 1b28d8ca48a059ab95292517f0d2d616 (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-03-21T13:25:41Z (GMT) No. of bitstreams: 1
silva_fs_me_guara.pdf: 3065864 bytes, checksum: 1b28d8ca48a059ab95292517f0d2d616 (MD5) / Made available in DSpace on 2018-03-21T13:25:41Z (GMT). No. of bitstreams: 1
silva_fs_me_guara.pdf: 3065864 bytes, checksum: 1b28d8ca48a059ab95292517f0d2d616 (MD5)
Previous issue date: 2018-02-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os modelos energéticos atuais são baseados majoritariamente na utilização de combustíveis fósseis, os quais, além de serem fontes finitas, ainda geram gases poluentes que contribuem para o efeito estufa e, consequentemente, para o aquecimento global. As células a combustível, por possuírem alta eficiência de conversão, baixa emissão, simplicidade de operação e flexibilidade em sua utilização, vêm sendo estudadas como opção mais limpa de geração. A célula a combustível de carbonato fundido, em particular, além de ter vantagens estruturais por operar a alta temperatura, possui calor residual que pode ser aproveitado para cogeração. O presente trabalho propõe uma configuração de ciclo combinado de uma célula a combustível de carbonato fundido de 10 MW, que possui reforma interna de gás natural, com um ciclo a vapor que aproveita o calor residual da célula. A reforma a vapor do gás natural, simulada pelo software STANJAN Chemical Equilibrium Solver, apresentou valores satisfatórios de produção de H2 na temperatura de operação da célula. As análises energética e exergética, simuladas através do software Engineering Equation Solver (EES), apontaram aumentos nas respectivas eficiências globais de 4,8 e 4,6%, respectivamente. A análise exergoeconômica indicou custo de geração de 0,4679 USD/kWh, valor acima das tarifas nacionais. Entretanto, a análise de sensibilidade mostrou que plantas de grande porte com essa configuração podem ser economicamente competitivas em diferentes cenários. / Current researches point to a significant increase in energy demand over the next few years. Energy models are mostly based on fossil fuels, which generates greenhouse gases that contribute to global warming. Thus, it becomes necessary to develop equipment and cycles that operate with greater efficiency, as well as new technologies of energy generation with both fossil and renewable sources. Fuel cells are being widely investigated due to their high conversion efficiency, low emissions, structural simplicity and flexibility. Among several fuel cell types, molten carbonate fuel cell has advantages such as fuel flexibility and high operating temperature, which leads to high thermal energy residue. This residue can be used for cogeneration and combined cycles, in order to enhance the global efficiency. This study aimed to introduce a 10 MW internal reforming molten carbonate fuel cell and steam turbine combined cycle. Steam reforming of natural gas was simulated by STANJAN Chemical Equilibrium Solver and presented satisfactory H2 production at MCFC operating temperature. Simulation in Engineering Equation Solver (EES) of energetic and exergetic analysis showed efficiency increases of 4,8 and 4,6%, respectively. Exergoeconomic analysis pointed to a 0,4679 USD/kWh power cost. However, sensitivity analysis showed that higher plants can achieve economic viability in different scenarios
|
52 |
A comparative environmental analysis of fossil fuel electricity generation options for South AfricaGovender, Indran 05 February 2009 (has links)
M.Sc. / The increased demand for electricity in South Africa is expected to exceed supply between 2004 and 2007. Electricity supply options in the country would be further complicated by the fact that older power stations would reach the end of their design life beyond the year 2025. In light of this and considering the long lead times required for the commissioning of new plants, new power supply options need to be proactively investigated. The environmental impacts associated with coal-fired generation of electricity have resulted in increased global concern over the past decade. To reduce these impacts, new technologies have been identified to help provide electricity from fossil fuels. The alternatives considered are gas-fired generation technologies and the Integrated Gasification Combined Cycle (IGCC). This study attempts to document and understand the environmental aspects related to gas-fired and IGCC electricity generation and evaluate their advantages in comparison to conventional pulverised coal fired power generation. The options that could be utilised to make fossil fuel electricity generation more environmentally friendly, whilst remaining economically feasible, were also evaluated. Gas-fired electricity generation is extremely successful as electricity generation systems in the world due to inherently low levels of emissions, high efficiencies, fuel flexibility and reduced demand on finite resources. Associated benefits of a Combined Cycle Gas Turbine (CCGT) are lower operating costs due to the reduced water consumption, smaller equipment size and a reduction in the wastewater that has to be treated before being returned to the environment. A CCGT plant requires less cooling water and can be located on a smaller area than a conventional Pulverised Fuel (PF) power station of the same capacity. All these factors reduce the burden on the environment. A CCGT also employs processes that utilises the energy of the fuel more efficiently, with the current efficiencies approaching 60%. Instead of simply being discharged into the atmosphere, the gas turbines’ exhaust gas heat is used to produce additional output in combination with a Heat Recovery Steam Generator (HRSG) and a steam turbine. Furthermore, as finite resources become increasingly scarce and energy has to be used as wisely as possible, generating electricity economically and in an ecologically sound manner is of the utmost importance. The clean, reliable operation of gas-fired generation systems with significantly reduced noise levels and their compact design makes their operation feasible in heavily populated areas, where electricity is needed most. At the same time, energy can be consumed in whatever form needed, i.e. as electricity, heat or steam. The dependence of the South African economy on cheap coal ensures that it will remain a vital component of future electricity generation options in the country. This dominance of coal-fired generation in the country is responsible for South Africa’s title as the largest generator of carbon dioxide (CO2) emissions on the continent and the country could possibly be requested to reduce its CO2 emissions at the next international meeting of signatories to the Kyoto Protocol. Carbon dioxide emissions can be reduced by utilising gas-fired generation technologies. However, the uncertainty and costs associated with natural gas in South Africa hampers the implementation of this technology. There are currently a number of initiatives surrounding the development of natural gas in the country, viz. the Pande and Temane projects in Mozambique and the Kudu project in Namibia, and this is likely to positively influence the choice of fuel utilised for electricity generation in the future. The economic viability of these projects would be further enhanced through the obtaining of Clean Development Mechanism (CDM) credits for greenhouse gases (GHG) emissions reduction. Alternatively, more efficient methods of generating electricity from coal must be developed and implemented. IGCC is capable of achieving this because of the high efficiencies associated with the combined cycle component of the technology. These higher efficiencies result in reduced emissions to the atmosphere for an equivalent unit of electricity generated from a PF station. An IGCC system can be successful in South Africa in that it combines the benefits of utilising gas-fired electricity generation systems whilst utilising economically feasible fuel, i.e. coal. IGCC systems can economically meet strict air pollution emission standards, produce water effluent within environmental limits, produce an environmentally benign slag, with good potential as a saleable by-product, and recover a valuable sulphur commodity by-product. Life-cycle analyses performed on IGCC power plants have identified CO2 release and natural resource depletion as their most significant positive lifecycle impacts, which testifies to the IGCC’s low pollutant releases and benign by-products. Recent studies have also shown that these plants can be built to efficiently accommodate future CO2 capture technology that could further reduce environmental impacts. The outstanding environmental performance of IGCC makes it an excellent technology for the clean production of electricity. IGCC systems also provide flexibility in the production of a wide range of products including electricity, fuels, chemicals, hydrogen, and steam, while utilizing low-cost, widely available feedstocks. Coal-based gasification systems provide an energy production alternative that is more efficient and environmentally friendly than competing coalfuelled technologies. The obstacle to the large-scale implementation of this technology in the country is the high costs associated with the technology. CDM credits and by-products sales could possible enhance the viability of implementing these technologies in South Africa.
|
53 |
Návrh HRSG kotle / Heat Recovery Steam Generator designDlouhá, Kristýna January 2019 (has links)
This master’s thesis deals with the design of a heat recovery steam generator. The introductory part of the thesis is dedicated to waste heat boilers, their division and their utilization in combined cycles gas turbine. In the following chapter, an analysis of the existing combined heat and power plant operation is performed. In the next part of the thesis, the conceptual layout of the new source is designed. Subsequently, the thermal calculation of the boiler is carried out as well as the design of individual heat exchanging surfaces. The sixth chapter deals with the strength calculation of the boiler and the outer piping, chambers and drum are designed here. At the end of the thesis there are described off-design states of the new combined cycle gas turbine.
|
54 |
Modularní horizontální kotel – HRSG / Modular Horizontal Heat Recovery Steam GeneratorPrimes, Alois January 2021 (has links)
This thesis deals with the design of a Heat Recovery Steam Generator (HRSG). Theintroductory part is devoted to a brief description of the boiler, the specified parametersand the compilation of the temperature profile. The main computational part of thiswork is divided into 6 parts. The first contains preparatory calculations, including thecalculation of boiler eiciency. In the second part, a flue gas duct is designed. This isfollowed by a thermal calculation of the boiler for all heat exchange surfaces. The last 3parts deal with the design of the drum, piping and the loss of boiler draft calculation.
|
55 |
Parní generátor / Steam generatorKrčálová, Petra January 2016 (has links)
Master thesis on topic steam generator deal with about improving the efficiency due to the use of combined cycle while producing electrical energy. The first part includes the possibility of using combustion engines in the energy sector and describes their advantages and disadvantages in the production of electricity. Further described is the use of the concept of a combustion engine in a combined cycle, and improving the efficiency of electricity through the use of waste heat boilers and steam turbines. The second part is design of the steam generator, which is connected behind the chosen combustion engine with power exceeding 10 MW. Whether this concept is profitable and competitive is in mentioned in the last chapter dealing with the return entry investment. In this chapter is compared several variants use and a demonstration of the impact of fuel prices on the profitability of this concept.
|
56 |
Operational impact to a CHP plant from integration of a biofuel top cycle pilot unit : A case study of KV62, LinköpingNYMAN, LINNÉA January 2020 (has links)
The coming years are expected to bring multiple challenges for all actors within the energy sector. For the Swedish utility company Tekniska verken AB, one of the upcoming tasks is to adapt their energy technologies to enable renewable, plannable and efficient heat and power production. At the same time as the share of renewable energy increases, the demand grows for technologies that can cover for the intermittency and align with policies and goals for sustainable energy. Part of Tekniska verken’s work is therefore focused on investigation of potential solutions for their heat and power production, that also agrees with the municipality’s vision to become “the World’s most resource efficient region”. One of the current projects within the area regards installation and tests of a of a biofueled top cycle (BTC) with high electric efficiency. The project is carried out together with the owner of the technology: Phoenix Biopower AB. This thesis is part of the pre-study to the pilot project, which is aimed to examine the feasibility of installing a pilot unit of the Phoenix Biopower BTC technology in Tekniska verken’s combined heat and power plant KV62, Linköping, Sweden. The thesis is meant to examine the site feasibility through evaluation of how the operation of KV62 will be influenced by the pilot unit’s operation. The work consists of a mapping of necessary interfaces between KV62 and the BTC pilot unit, followed by an assessment of the impact of the pilot unit on operation of KV62. The feasibility is evaluated with respect to operational limits of KV62 and the study includes both quantitative and qualitative evaluation of the impact from the interfaces between the two units. The study has special focus on the impact from the pilot´s flue gases on the flue gas handling system in KV62 which appeared to be a critical interface with respect to the operational limits. The resulting operational changes in this work indicate that the pilot unit can be installed and run in connection to KV62, but that normal operation of KV62 cannot be sustained during steady state operation of the BTC pilot. This is mainly due to the pilot unit’s load in terms of steam withdrawal, and additional heat to the heat recovery system, that cannot be fully managed with the current capacity for feedwater in KV62. However, there can still be potential solutions to run test campaigns of the BTC pilot simultaneously as KV62 delivers both heat and power. It should be taken into consideration that the pilot units’ behavior during transients are not investigated in this work and therefore need further investigation before a decision about the feasibility of the pilot unit installation can be made. Furthermore, some interfaces have multiple options for their placements, and therefore a detailed heat-and mass balance over KV62 would be suggested to investigate the effects of the symbiosis between the decided interface locations further. / Framtiden förväntas medföra många utmaningar för aktörer inom energisektorn, och för Tekniska verken i Linköping är en av de framtida utmaningarna att anpassa energisystemet till kraft- och värmetekniker som är förnybara, effektiva och planerbara. Samtidigt som andelen förnybara energikällor ökar, växer även behovet för energi som kan täcka för oregelbundenheten hos vind- och solkraft och samtidigt passa i Linköpings vision om att bli världens mest resurseffektiva region. En del av Tekniska verkens arbete är att utforska möjliga lösningar för deras framtida energisystem, och en gren i arbetet med forskning och utveckling är ett projekt med mål att bygga och testa en pilotanläggning av en biobränslebaserad toppcykel (BTC). Projektet genomförs tillsammans med teknologins ägare: Phoenix Biopower. Detta examensarbete är del av förstudien tillhörande pilotprojektet, som är ämnad att undersöka genomförbarheten i att installera en pilotanläggning av Phoenix Biopowers teknologi med ett av Tekniska verken i Linköpings kraftvärmeverk, KV62 som moderanläggning. Examensarbetet syftar till att undersöka projektets genomförbarhet genom utvärdering av hur driften av KV62 kommer påverkas av pilotenheten. Arbetet består av en kartläggning av nödvändiga gränssnitt mellan KV62 och BTC-piloten, vilket följs av en bedömning av pilotenhetens inverkan på driften av KV62. Genomförbarheten utvärderas med avseende på driftsgränser för KV62 och studien inkluderar både kvantitativ och kvalitativ utvärdering av pilotens påverkan på KV62 till följd av gränssnitten mellan de två enheterna. Studien har särskilt fokus på rökgasens gränssnitt, som visade sig kunna vara kritiskt med avseende på påverkan från pilotens rökgas på processerna i KV62. Resultatet från arbetet visar att det är möjligt att ansluta och driva pilotanläggningen vid KV62, men att normal drift av KV62 inte kan bibehållas vid drift av BTC-piloten, framförallt på grund av pilotanläggningens belastning genom uttag av ånga; som inte kan hanteras fullt ut av befintlig kapacitet för matarvatten, och tillskottet av effekt till rökgasstråket vid överhettarna. Innan en slutgiltig bedömning av BTC-pilotens genomförbarhet med avseende på påverkan på KV62 kan göras vore det lämpligt att genomföra en studie av påverkan på KV62 under pilotens transienter, samt en analys av värme- och massbalanser i KV62 för fastställda placeringar av gränssnitten.
|
57 |
Power-to-X-to-Power in Combined Cycle Power Plants : A Techno-Economic Feasibility StudyEngstam, Linus January 2021 (has links)
To support the largescale integration of renewables in electricity grids, powertoXtopower (P2X2P) systems have been proposed. These systems serve to increase the flexibility of thermal power plants while potentially providing both economic and environmental benefits by allowing power from the plant to be redirected into an electrolyzer and converted to a gaseous energy carrier. In this study, the feasibility of a P2X2P system consisting of a combined cycle gas turbine (CCGT) power plant coupled with a PEM electrolyzer in the Italian power sector has been investigated. A dynamic technoeconomic model has been developed for both hydrogen and ammoniabased systems together with a profit maximizing dispatch strategy for operation in both day-ahead and balancing electricity markets. As a part of this, a PEM electrolyzer model was also developed and validated against experimental data. Notable technical improvements were observed as a consequence of the implementation of a P2X2P system in the form of avoided shutdowns and a more even power output. However, any economic and environmental benefits of such improvements were not observed as the addition of the P2X2P system led to a reduction in net present value as well as higher specific emissions of carbon dioxide. When the gaseous energy carrier was utilized as fuel in the CCGT, similar technical performances were achieved by the hydrogenbased and ammoniabased systems. Due to the increased investment cost demanded by the ammonia production process the hydrogenbased system thus seems most suitable for this setup. / För att möjliggöra en storskalig utbyggnad av förnyelsebar energi har powertoXtopowersystem (P2X2P) föreslagits som en potentiell lösning. Genom att omdirigera electricitet från kraftverket till en elektrolysator och därmed omvandla denna till vätgas kan dessa system förbättra den tekniska flexibiliten hos värmekraftverk samtidigt som de har potential att medföra både ekonomiska och miljömässiga fördelar. Detta examensarbete har undersökt den teknoekonomiska potentialen hos ett P2X2Psystem bestående av ett gaskombikraftverk i anslutning till en elektrolysator i det italienska kraftnätet. En dynamisk, teknoekonomisk modell av både vätgas och ammoniakbaserade P2X2Psystem samt en vinstmaximerande kontrollstrategi har utvecklats. En modell över en PEMelektrolysator har även utvecklats och validerats gentemot experimentella data. Införandet av ett P2X2Psystem till kraftverket påvisade en teknisk förbättringspotential genom ett minskat antal uppstarter samt en mer jämn uteffekt. Huruvida denna tekniska förbättring också medför ekonomisk and miljömässig förbättring eller ej kvarstår att påvisa. Detta då nuvärdet minskade samtidigt som koldioxidutsläppen per producerad kilowatttimme ökade vid införandet av P2X2Psystemet. Då den producerade energibäraren, i form av vätgas eller ammoniak, enbart användes för att ersätta fossilgas som bränsle i kraftverket påvisades marginell skillnad i presetanda mellan de två systemen. De större kostnaderna som medförs av ett ammoniakbaserat system pekar därför på att ett vätgasbaserat system vore att föredra under sådana förutsättningar.
|
58 |
eco-Technoeconomic-Analysis of Steel Manufacturing Off-gas ValorizationDENG, LINGYAN January 2020 (has links)
The steel manufacturing industry is one of the largest emitters of CO2, accounting for upwards of 8.8% of all anthropogenic CO2 emissions. The governments are charging taxes on CO2 emissions, which incentivize the industry to further reduce CO2 emissions. At present, much of the CO2, produced in the steel manufacturing process occurs as a result of coke oven and blast furnace gas by-products. As such, two major strategies have been proposed to reduce steel-manufacturing-related CO2 emissions: producing more electricity via optimized combined cycle power plants (CCPP), and converting off-gas by-products into methanol (CBMeOH). The present research consists of an economic and environmental analysis of the status quo, CCPP, and CBMeOH systems for five locations: Ontario, the USA, Finland, Mexico, and China. The economic analysis considered factors such as carbon tax, electricity price, methanol price, electricity carbon intensity, power purchasing parity, and income tax. In the CCPP process, desulphurization is conducted using ProMax with MDEA as the solvent, while the CBMeOH process uses a membrane to separate the bulk H2S, with organic sulfurs such as thiophene being removed via CO2+steam reforming and middle-temperature removal. The results of the economic analysis revealed the CBMeOH plant to be the most profitable in Ontario, the USA, China, and Mexico, while the CCPP system was shown to be the most profitable in Finland. The environmental analysis was conducted using the TRACI, CML-IA, ReCiPe2016, and IMPACT2002+ tools in SimaPro V9, with the results showing the CBMeOH system to be the most environmentally option in Ontario, Finland, and China, and the CCPP system as the most environmentally friendly option in the USA and Mexico. / Dissertation / Doctor of Philosophy (PhD)
|
59 |
Design, optimization and validation of start-up sequences of energy production systems. / Conception, optimisation et validation des séquences de démarrage des systèmes de production d'énergieTica, Adrian 01 June 2012 (has links)
Cette thèse porte sur l’application des approches de commande prédictive pour l’optimisation des démarrages des centrales à cycles combinés. Il s’agit d’une problématique à fort enjeu qui pose des défis importants. L’élaboration des approches est progressive. Dans une première partie un modèle de centrale est construit et adapté à l’optimisation, en utilisant une méthodologie qui transforme des modèles physiques Modelica conçus pour la simulation en des modèles pour l’optimisation. Cette méthodologie a permis de construire une bibliothèque adaptée à l’optimisation. La suite des travaux porte sur l’utilisation du modèle afin d’optimiser phase par phase les performances du démarrage. La solution proposée optimise, en temps continu, le profil de charge des turbines en recherchant dans des ensembles de fonctions particulières. Le profil optimal est déterminé en considérant que celui-ci peut être décrit par une fonction paramétrée dont les paramètres sont calculés en résolvant un problème de commande optimale sous contraintes. La dernière partie des travaux consiste à intégrer cette démarche d’optimisation à temps continu dans une stratégie de commande à horizon glissant. Cette approche permet d’une part de corriger les dérives liées aux erreurs de modèles et aux perturbations, et d’autre part, d’améliorer le compromis entre le temps de calcul et l’optimalité de la solution. Cette approche de commande conduit cependant à des temps de calcul importants. Afin de réduire le temps de calcul, une structure de commande prédictive hiérarchisée avec deux niveaux, en travaillant à des échelles de temps et sur des horizons différents, a été proposée. / This thesis focuses on the application of model predictive control approaches to optimize the combined cycle power plants start-ups. Generally, the optimization of start-up is a very problematic issue that poses significant challenges. The development of the proposed approaches is progressive. In the first part a physical model of plant is developed and adapted to optimization purposes, by using a methodology which transforms Modelica model components into optimization-oriented models. By applying this methodology, a library suitable for optimization purposes has been built.In the second part, based on the developed model, an optimization procedure to improve the performances of the start-up phases is suggested. The proposed solution optimizes, in continuous time, the load profile of the turbines, by seeking in specific sets of functions. The optimal profile is derived by considering that this profile can be described by a parameterized function whose parameters are computed by solving a constrained optimal control problem. In the last part, the open-loop optimization procedure has been integrated into a receding horizon control strategy. This strategy represents a robust solution against perturbation and models errors, and enables to improve the trade-off between computation time and optimality of the solution. Nevertheless, the control approach leads to a significant computation time. In order to obtain real-time implementable results, a hierarchical model predictive control structure with two layers, working at different time scales and over different prediction horizons, has been proposed.
|
60 |
Avaliação legal, ambiental e econômico-financeira da implantação de sistema próprio de tratamento de resíduos de serviços de saúde no HC-FMRP-USP para geração de energia / Legal, environmental and economic-financial assessment to implement a private system to treat medical waste at HC-FMRP-USP in order to generate energyNovi, Juliana Chiaretti 12 January 2012 (has links)
Encontrar soluções para a problemática dos resíduos e, em virtude da crescente demanda por energia, diminuir a dependência dos combustíveis fósseis têm constituído grandes desafios para os pesquisadores. O setor hospitalar é um potencial gerador dos chamados Resíduos de Serviços de Saúde (RSS) que também apresenta um alto consumo de energia em decorrência do seu período de funcionamento e de equipamentos que necessitam de infraestrutura adequada. Apesar de representarem uma pequena parcela perante o montante dos Resíduos Sólidos Urbanos (RSU), no Brasil, nem todos os geradores se preocupam com seu tratamento e destinação final. O emprego de tecnologias desenvolvidas para o tratamento desses resíduos com a possibilidade de recuperação energética deve ser avaliado. O Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HC-FMRP-USP) gera cerca de 1,9 ton/dia de RSS. Nesse contexto, o objetivo geral desta pesquisa foi avaliar a viabilidade legal, ambiental e econômico-financeira da implantação de um sistema próprio de tratamento de RSS no HCFMRP- USP para geração de energia. A metodologia foi estruturada em pesquisa exploratória, coleta de dados por meio de entrevistas semi-estruturadas com responsáveis pelo setor dos RSS no hospital, com pesquisadores da área da saúde, de escolas de engenharia, órgãos técnicos e indústrias fabricantes dos equipamentos; levantamento bibliográfico e análise de conteúdo. Para a avaliação econômico-financeira, foi empregada a avaliação custoefetividade. Estudos comparativos sobre os tipos de tratamento disponíveis e utilizados nacionalmente foram considerados. Assim, o processo que melhor se adequou ao sistema proposto foi o da incineração com tecnologia de gaseificação e combustão combinadas (GCC). Os resultados demonstraram que o sistema proposto está sob a égide da lei contemplando, inclusive, a Política Nacional de Resíduos Sólidos (PNRS), desde que mediante anuência do Conselho Gestor do campus da USP e de sua Comissão de Meio Ambiente, além do devido processo de licenciamento ambiental junto à CETESB e pré-análise dos RSS. Contudo, sob o aspecto ambiental há questões públicas e políticas sobre a aceitação de sua implantação no complexo hospitalar. Embora haja o emprego de avançada tecnologia, o equipamento avaliado necessita de instalação, manutenção e monitoramento adequados por profissionais capacitados para operá-los, a fim de se evitar possíveis danos às pessoas e ao meio-ambiente, para isso, os envolvidos devem agir com responsabilidade. Por fim, sob o aspecto econômico-financeiro houve um empate técnico entre os custos do tratamento realizado atualmente e os da proposta do investimento. Assim, esse último aspecto avaliado incidiu sobre o benefício implícito da decisão de se implantar ou não o processo. Portanto, considera-se a viabilidade da implantação de um sistema próprio para tratamento de RSS no HCFMRP-USP para geração de energia sob os três aspectos: legal, ambiental e econômicofinanceiro. / Finding solutions to the waste problem and reducing dependence on fossil fuels due to the growing demand for energy have become big challenges for researchers to deal with. Hospitals are large producers of Medical waste (MW) and also big energy consumers due to their long running hours and the running of equipment that demands adequate infrastructure. Despite accounting for a small share of all the Municipal Solid Waste (MSW) not all producers, in Brazil, are concerned about waste treatment and its final destination. The use of technologies developed with the aim of treating such waste in order to generate energy has to be assessed. The Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HCFMRP-USP) generates around 1.9 tons of waste per day. In this context, the general aim of this research program was to assess the legal, environmental and economic-financial feasibility of the implementation of a private system of biomedical waste treatment at HCFMRP-USP in order to generate energy. The method was structured in exploratory research, data gathering by means of semi-structured interviews with MW department staff at the hospital, with Health researchers, with Engineering College researchers, technical organizations and equipment manufacturers, besides bibliographic referencing and content analysis. Cost-effectiveness analysis was used for the economic-financial analysis. Comparative studies of the types of treatment available and used nationwide were taken into consideration. Thus, the process which best suited the proposed system was that of incineration by means of Gasification Combined Cycle (GCC). Results showed that the proposed system is under the support of Law and it also takes into consideration the National Policy for Solid Waste (NPSW), provided that it has the approval of the Director Council of the Administration of the campus of USP and of its Environment Committee as well as appropriate environmental licenses granted by CETESB and pre-analysis of MW. However, under the environmental aspect, there are public and political issues regarding the acceptance of this implementation in the hospital premises. Although there is the use of advanced technology, the equipment which was assessed needs to be installed, maintained and monitored adequately by professionals trained to operate it so as to avoid possible damage to humans and the environment. Staff involved must be responsible. Finally, under the economic-financial aspect there was a draw between the costs of the treatment conducted at present and those of the proposed investment. Therefore, this last aspect assessed prevailed over the implicit benefit of the decision on whether to implement the process or not. However, the feasibility of the implementation of a private MW treatment system at HC-FMRP-USP in order to generate energy is to be considered under the legal, environmental and economicfinancial aspects.
|
Page generated in 0.0372 seconds