• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1364
  • 425
  • 366
  • 282
  • 177
  • 68
  • 58
  • 33
  • 25
  • 18
  • 17
  • 10
  • 10
  • 9
  • 9
  • Tagged with
  • 3766
  • 814
  • 540
  • 442
  • 429
  • 386
  • 362
  • 361
  • 357
  • 332
  • 316
  • 307
  • 304
  • 253
  • 247
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Ignition by air injection (CIBAI) for controlled auto-ignition in a CFR engine

Echavarria, Fernando, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains xvi, 179 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 127-132).
442

Simulation and stability analysis of jet diffusion flames /

Nichols, Joseph W. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 181-184).
443

Effect of co-combustion of coal and biomass on combustion performance and pollutant emissions /

Kwong, Chi Wai. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / "Sponsored by: CLP Research Institute." "HKUST project no.: CLPRI02/03.EG01." Includes bibliographical references (leaves 76-83). Also available in electronic version.
444

On soot inception in nonpremixed flames and the effects of flame structure

Liu, Shiling. January 2001 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2001. / Includes bibliographical references (leaves 192-196). Also available on microfiche.
445

Analysis of a feedback control system for a fluidized bed corncob combustor /

Schonauer, Sylvia L. January 1900 (has links)
Thesis (M.S.)--Ohio State University, 1985. / Includes bibliographical references (leaves 93-95). Available online via OhioLINK's ETD Center
446

Étude des phénomènes de combustion par spectrométrie Raman laser résolue dans le temps et dans l'espace.

Barj, Mohamed, January 1900 (has links)
Th. 3e cycle--Spectrochim. et méthodes d'anal.--Lille 1, 1980. N°: 846.
447

Relationships between polymer-additive molecular structure and intumescent flame retardant behaviour

Anderton, Edwyn Christopher Morgan January 1990 (has links)
This thesis describes studies of the relationship between the molecular structure of a range of organophosphorus-based polymer additives and their ability to confer intumescent flame retardant properties on the resulting polymers. The development of intumescent fire retardants is discussed along with the principles of flame retardancy in general. Much of the work centred around the chemistry of a key starting material, pentaerythritol phosphate (PEPA). This compound was found to be less reactive than expected, due to a combination of its neopentyl type structure and the electron withdrawing effect of the phosphoric ester functionality. Various derivatives of PEPA were synthesised, most containing reactive functional groups which facilitated future development of the compound. The derivatives containing no reactive groups were investigated for their intumescent behaviour in their own right. Derivatives of PEPA containing an acidic functionality were utilised in the production of intumescent salt systems using cations with a high nitrogen content in the form of s-triazines. The most promising was the trimethylolmelamine salt of a bis-PEPA derivative of phosphoric acid, which, on testing, proved to be more effective than the current "state of the art" intumescent additive. Metal salts of acidic PEPA-derivatives were also investigated. Derivatives of PEPA containing a carbon-carbon double bond were investigated for their potential to polymerise and thus form more stable additives. Only one such polymer was successfully synthesised, that being poly (PEPA methacrylate). Despite being non-intumescent, due to its high thermal stability this polymer has potential as a flame retardant additive. The monomer was found to copolymerise with methyl methacrylate to form a polymer of high thermal stability. When investigating the relationship between the molecular structure of the compounds developed and their intumescent behaviour, it was observed that only compounds containing an ionisable hydrogen atom exhibited intumescent decomposition on pyrolysis.
448

The analysis of the combustion of methanol in lean-burning, high-compression engines using an engine combustion model

Johns, R. A. January 1985 (has links)
Alcohol fuels are expected to become an economic/strategic alternative to oil over the next decade as oil reserves are depleted and countries seek to become more energy self-sufficient. Methanol, produced from natural gas deposits, and ethanol, produced locally by distillation of biomass, offer easily transportable alternatives. The use of a wider range of fuels in spark-ignition engines and the quest for fuel economy whilst meeting exhaust emissions legislation are important issues in engine design. The performance of current and proposed combustion chamber designs needs to be assessed with lean mixtures of both conventional and alternative fuels. The parameters defining combustion chamber performance, initial flame development and cycle-to-cycle variations in combustion may be readily determined using computer in-cylinder combustion models in a diagnostic manner to reduce experimentally acquired cylinder pressure data. This thesis develops and applies two analysis techniques to the study of the combustion of methanol in the lean burning regime with experimental results from three engines. The pressure increment technique, in which the pressure rise owing to combustion at constant volume is computed, is suitable for use directly on microcomputer systems. The two-zone equilibrium theory model, in which the mass burnt to give the measured pressure rise is evaluated, provides a more comprehensive analysis but is demanding in computer power. Higher burning rates were achieved using highly turbulent combustion chambers with methanol and equivalence ratios could be leaned to about 0.8 before cycle-to-cycle variations in combustion limited stable operation. The results obtained indicated the significant phases of initial flame development, the influence of early flame development on subsequent burning rates, and the influence of differing chamber geometries on performance. The combustion process was modelled for use in parametric studies of engine performance based on empirical data.
449

Energetics and mechanism of boron/oxidant combustion reactions

Goodfield, Allen January 1982 (has links)
A brief introduction to the field of pyrotechnic time delays is given, followed by a survey of the published work in the field up to the present time. A description is provided of the experimental techniques, equipment and materials used. The energetics and mechanism of reaction in the boron/lead monoxide and boron/stannic oxide systems have been investigated by comparison with the more familiar, analogous silicon fuelled systems; the emphasis being placed on the boron/lead monoxide system. The heats of reaction of the four fuel/oxidant systems have been measured by the use of bomb calorimetry, the results being discussed in relation to the probable reactions taking place in each system. Conclusions have been drawn as to the nature of the reactions which provide heat outputs in excess of the theoretical values in the boron fuelled systems. The propagation rates of the four fuel/oxidant systems have been measured and the relationship between heat output and propagation rate in each system is discussed. An explanation is proposed for the apparently anomalous behaviour of the boron fuelled systems. The response of the propagation rates in each system to varying consolidation pressure has been investigated. An explanation is proposed for the difference in behaviour displayed by the boron and silicon fuelled systems. A method of non-contact temperature measurement using a recording infra-red brightness pyrometer has been investigated. The reaction temperatures of the four fuel/oxidant systems have been measured and their relationships to the response of the propagation rates of each system to consolidation pressure variations are discussed. The boron/lead monoxide reaction in loose powder mixes has been investigated using differential scanning calorimetry. Hot stage microscopy has been used to investigate boron/lead monoxide reactions in loose powder mixes and between consolidated pellets of the individual reactants. The thermal analysis results obtained demonstrate the effect of the boron oxidation product, B 2 0 3 , on the reaction rate and the role which it plays in the reaction mechanism in the boron/lead monoxide system. A reaction mechanism is proposed for the non-propagative reaction between boron and lead monoxide. The extraction and kinetic analysis of data from the differential scanning calorimetry investigation of the boron/lead monoxide system is discussed. It is demonstrated that the analysis of the dynamic data is virtually impossible due to the complexity of the peak patterns obtained.
450

Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène / Numerical study of hydrogen enrichment of lean methane/air turbulent premixed combustion

Mameri, Abdelbaki 15 December 2009 (has links)
L’enrichissement des hydrocarbures par l’hydrogène permet d’améliorer les performances de la combustion pauvre (augmentation de la réactivité, résistance à l’étirement, stabilité, réduction des polluants, …). Il est primordial de connaitre les caractéristiques de la combustion de ces combustibles hybrides dans différentes conditions, afin de pouvoir les utiliser d’une manière sûre et efficace dans les installations pratiques. L’approche expérimentale reste coûteuse et limitée à certaines conditions opératoires. Cependant, le calcul numérique peut constituer la solution la plus adaptée, compte tenu du progrès réalisé dans le domaine de l’informatique et de la modélisation. Dans ce contexte, ce travail que nous avons effectué à l’ICARE (Institut de Combustion, Aérothermique et Réactivité, CNRS Orléans) vise à compléter les résultats des essais expérimentaux. Les effets de la richesse du mélange et l’ajout de l’hydrogène sur la structure et la formation des polluants sont étudiés dans ce travail. L’augmentation de la richesse du combustible permet de stabiliser la flamme, mais augmente la température et produit plus de CO, CO2 et NOx. Par contre, l’addition de H2 augmente l’efficacité du mélange, stabilise la flamme avec une légère élévation de la température maximale et une diminution des fractions massiques de CO, CO2 et NOx. Le remplacement d’une fraction de 10% où même 20% du gaz principal par l’hydrogène améliore les performances des installations et ne nécessite aucune modification sur les systèmes de combustion. / Fuel blending represents a promising approach for reducing harmful emissions from combustion systems. The addition of hydrogen to hydrocarbon fuels affects both chemical and physical combustion processes. These changes affect among others flame stability, combustor acoustics, pollutant emissions and combustor efficiency. Only a few of these issues are understood. Therefore, it is important to examine these characteristics to enable using blend fuels in practical energy systems productions. The experimental approach is restricted in general to specific operating conditions (temperature, pressure, H2 percentage in the mixture, etc.) due to its high costs. However, the numerical simulation can represent a suitable less costly alternative. The aim of this study done at ICARE is to complete the experiments. Equivalence ratio and hydrogen enrichment effects on lean methane/air flame structure were studied. The increase of the equivalence ratio, increases flame temperature and stability but produces more CO, CO2 and NOx. Hydrogen blending, increases flame stability and reduces emissions. The replacement of 10% or 20% of the fuel by hydrogen enhances installation efficiency with no modifications needed on the combustion system.

Page generated in 0.0872 seconds