• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène / Numerical study of hydrogen enrichment of lean methane/air turbulent premixed combustion

Mameri, Abdelbaki 15 December 2009 (has links)
L’enrichissement des hydrocarbures par l’hydrogène permet d’améliorer les performances de la combustion pauvre (augmentation de la réactivité, résistance à l’étirement, stabilité, réduction des polluants, …). Il est primordial de connaitre les caractéristiques de la combustion de ces combustibles hybrides dans différentes conditions, afin de pouvoir les utiliser d’une manière sûre et efficace dans les installations pratiques. L’approche expérimentale reste coûteuse et limitée à certaines conditions opératoires. Cependant, le calcul numérique peut constituer la solution la plus adaptée, compte tenu du progrès réalisé dans le domaine de l’informatique et de la modélisation. Dans ce contexte, ce travail que nous avons effectué à l’ICARE (Institut de Combustion, Aérothermique et Réactivité, CNRS Orléans) vise à compléter les résultats des essais expérimentaux. Les effets de la richesse du mélange et l’ajout de l’hydrogène sur la structure et la formation des polluants sont étudiés dans ce travail. L’augmentation de la richesse du combustible permet de stabiliser la flamme, mais augmente la température et produit plus de CO, CO2 et NOx. Par contre, l’addition de H2 augmente l’efficacité du mélange, stabilise la flamme avec une légère élévation de la température maximale et une diminution des fractions massiques de CO, CO2 et NOx. Le remplacement d’une fraction de 10% où même 20% du gaz principal par l’hydrogène améliore les performances des installations et ne nécessite aucune modification sur les systèmes de combustion. / Fuel blending represents a promising approach for reducing harmful emissions from combustion systems. The addition of hydrogen to hydrocarbon fuels affects both chemical and physical combustion processes. These changes affect among others flame stability, combustor acoustics, pollutant emissions and combustor efficiency. Only a few of these issues are understood. Therefore, it is important to examine these characteristics to enable using blend fuels in practical energy systems productions. The experimental approach is restricted in general to specific operating conditions (temperature, pressure, H2 percentage in the mixture, etc.) due to its high costs. However, the numerical simulation can represent a suitable less costly alternative. The aim of this study done at ICARE is to complete the experiments. Equivalence ratio and hydrogen enrichment effects on lean methane/air flame structure were studied. The increase of the equivalence ratio, increases flame temperature and stability but produces more CO, CO2 and NOx. Hydrogen blending, increases flame stability and reduces emissions. The replacement of 10% or 20% of the fuel by hydrogen enhances installation efficiency with no modifications needed on the combustion system.
2

Modification of combined cycle power plant to reduce CO2 footprint

Sudiasa, I Wayan January 2023 (has links)
Worldwide concern on reducing global warming consequences has motivated the development of power generation technologies to move towards renewable and sustainable energy. The process takes time and currently, a significant percentage of the world’s electricity systems are driven by fossil fuels. The transition phase from fossil fuel to renewable technology has allowed the combined cycle gas power plant to play an essential role in our global energy mix. This investigation aims to develop scenarios to improve its performance and reduce the carbon footprint during its operation. A baseline scenario of the natural gas combined cycle has been developed using Aspen Hysys software, and the simulation performance is validated with ASME PTC 4-4. The analytical validation results in a 1.13% difference in air and fuel flow rate of 642.95 kg/s compared with 650.28 kg/s as simulation input. Four scenarios are developed following the baseline scenario: seawater cooling and intercooling with LNG cold energy utilization, carbon capture, and hydrogen blending. Those scenarios are compared with three key performance indicators such as system efficiency (%), levelized cost of electricity (USD/MWh), and specific carbon dioxide emissions (gr-CO2/kWh). The analysis shows that sea water cooling with LNG cold energy achieves the highest efficiency of 56.46%, a 0.12% increase compared with the baseline scenario. Hydrogen blending with natural gas achieves the lowest LCOE and specific carbon dioxide footprint of 46.97 USD/MWh and 351.23 gr-CO2/kWh, respectively. The reduction of 12.58 kTon annual carbon dioxide is achieved by implementing 5% hydrogen blending by volume into the combined cycle power generation system. / Världsomfattande oro att minska konsekvenserna av den globala uppvärmningen har motiverat kraftgenereringsteknik att gå mot förnybar och hållbar energiutveckling. Processen tar tid och förnuvarande drivs en betydande andel av världens elsystem av fossila bränslen. Övergångsfasen från fossilt bränsle till förnybar teknik har gjort det möjligt för kombikraftverk att spela en viktig roll i vår globala energimix. Denna rapport syftar till att utveckla scenarier för att förbättra dess prestanda och minska koldioxidavtrycket under dess drift. Ett utgångsscenario för naturgasens kombinerade cykel har utvecklats med hjälp av Aspen Hysys programvara, och simuleringsprestandan är validerad med ASME PTC 4-4. Den analytiska valideringen resulterar i en skillnad på 1,13 % i luft- och bränsleflöde på 642,95 kg/s jämfört med 650,28 kg/s som simuleringsindata. Fyra scenarier utvecklas efter baslinjescenariot: havsvattenkylning och mellankylning med LNG kall energianvändning, kolavskiljning och väteblandning. Dessa scenarier jämförs med tre nyckeltal som systemeffektivitet (%), utjämnad kostnad för el (USD/MWh) och specifika koldioxidutsläpp (gr-CO2/kWh). Analysen visar att havsvattenkylning med LNG kall energi uppnår den största verkningsgraden på 56,46 %, en ökning med 0,12 % jämfört med utgångsscenariot. Vätgasblandning med naturgas uppnår lägsta LCOE och specifika koldioxidavtryck på 46,97 USD/MWh respektive 351,23 gr-CO2/kWh. Minskningen av 12,58 kTon årlig koldioxid uppnås genom att implementera 5 % vätgasblandning i volym i det kombinerade kraftgenereringssystemet.

Page generated in 0.0827 seconds