• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 16
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Effects of high levels of steam addition on NOx̳ reduction in laminar opposed flow diffusion flames /

Blevins, Linda G., January 1992 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1992. / On t.p. "x̳" is subscript. Vita. Abstract. Includes bibliographical references (leaves 92-97). Also available via the Internet.
32

Flame stability of an ultra-lean premixed low-swirl burner /

Strahman, Julio Gustavo. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 97-102). Also available in electronic format on the Internet.
33

Simulations of a sub-scale liquid rocket engine transient heat transfer in a real gas environment /

Masquelet, Matthieu M. January 2006 (has links)
Thesis (M. S.)--Aerospace Engineering, Georgia Institute of Technology, 2007. / Ruffin, Stephen, Committee Member ; Seitzman, Jerry, Committee Member ; Menon, Suresh, Committee Chair.
34

Ignition and flameholding in supersonic flow by injection of dissociated hydrogen

Wagner, Timothy Charles January 1987 (has links)
The objective of this research was to investigate analytically and experimentally the use of free radicals for ignition and flameholding in supersonic flows. An analytical investigation of the effects of adding small quantities of radicals to a stoichiometric mixture of hydrogen and air was performed using a finite-rate chemical kinetics code. The results of these calculations indicate that small additions of hydrogen atoms, oxygen atoms, nitrogen atoms, or hydroxyl radicals are effective in promoting ignition. These analytical results were qualitatively verified in a Mach 2 flow experiment using hydrogen atoms generated by a plasma torch. The supersonic combustion tests were conducted in a direct-connect mode at atmospheric pressure with either ambient temperature air or burner-heated vitiated air with total temperatures from 1200 to 4000 R. Both semi-freejet and ducted configurations were used. The experimental results indicate that hydrogen atoms from a low-power plasma torch provide an effective ignition and flameholding source for hydrogen-fueled Mach 2 flows at total temperatures as low as 1065 R, the lowest temperature tested. A reduction in the minimum total temperature required for ignition of several hydrocarbon fuels was also demonstrated. A piloted fuel injector configuration designed to take maximum advantage of the hydrogen atoms from the plasma torch was conceived and fabricated. The injector design consisted of five small upstream pilot fuel injectors, a rearward-facing step and three primary fuel injectors downstream of the step. The hydrogen atoms from the plasma torch were injected in the recirculation region downstream of the step. Three other ignition sources were also tested as comparisons: an argon plasma, a pyrophoric mixture of silane and hydrogen, and a surface discharge device. Hydrogen-fueled supersonic combustion tests were conducted at conditions similar to those described earlier. Hydrogen atoms generated by the plasma torch proved to be the most effective ignition source, causing ignition for a torch input power of 780 W, the lowest power tested. The combination of the hydrogen atoms and the piloted fuel injector was shown to be a very effective igniter and flameholder for scramjet operation over a simulated flight envelope (Mach 3 to Mach 6, low to moderate altitudes). / Ph. D. / incomplete_metadata
35

Direct injection gasoline engine particulate emissions

Price, Philip Daniel January 2009 (has links)
Direct fuel injection technology is increasingly being applied to the spark ignition internal combustion engine as one of the many actions required to reduce the CO2 emissions from road transport. Whilst the potential for CO2 reductions is compelling, the technology is not without disadvantages. Early examples typically emitted over an order of magnitude more Particulate Matter (PM) than vehicles with conventional spark ignition engines. Consequently, future revisions to European and North American exhaust emissions legislation are likely to regulate the particulate emissions from vehicles with direct injection gasoline engines. This thesis undertakes to investigate a) instrumentation capable of simultaneously resolving the number concentration and size distribution of particles in the 5-1000 nm size range and b) the factors affecting the PM emissions from spark ignition engines with direct fuel injection. The first objective is achieved by evaluation and comparison of a differential mobility spectrometer; photo-acoustic soot sensor; condensation particle counter and electrical low pressure impactor. To address the second question, a differential mobility spectrometer is applied to quantify the PM emissions from a number of direct injection gasoline engines, together with investigation of their dependence on various calibratable parameters, operating temperature and fuel composition. The differential mobility spectrometer showed good agreement with the other more established instruments tested. Moreover, it exhibited a faster time response and finer resolution in particle size. The number weighted size distribution of the PM emitted was typically lognormal with either one or two modes located between 20 and 100 nm. Chemical analysis of PM samples showed the presence of elemental carbon, volatile organic material and sulphates. Transient PM measurements enabled short time-scale events such as mode switching between homogeneous and stratified mixture preparation to be identified. PM number concentrations in stratified mode exceeded those in homogeneous mode by a factor of 10-100. Dynamometer based experiments showed that PM emissions increase for rich air fuel ratios, retarded fuel injection and advanced ignition events. They also demonstrated a strong dependence on fuel composition: the highest PM emissions were measured with an aromatic fuel, whereas blending alcohols such as methanol or ethanol tended to suppress PM emissions, particularly in the accumulation mode size range. These measurements are amongst the first of their kind and demonstrate the applicability of the differential mobility spectrometer to the measurement of ultra-fine particulate emissions from engines with direct fuel injection systems. Numerous explanations are put forward to describe the data obtained, together with suggestions for future work on PM control and abatement.
36

Laser diagnostics in MILD combustion.

Medwell, Paul R. January 2007 (has links)
Despite mounting concerns of looming global warming and fuel shortages, combustion will remain the predominant source of fulfilling the world’s ever-increasing demand for energy in the foreseeable future. In light of these issues, the combustion regime known as Moderate and Intense Low oxygen Dilution (MILD) combustion has the potential of offering increased efficiency whilst lowering pollutant emissions. Essentially, MILD combustion relies on the reuse of the exhaust gases from the combustion process to simultaneously dilute the oxygen concentration of the oxidant stream, and increase its temperature. The benefit of this technique is that it results in a vast reduction in emissions, especially oxides of nitrogen. In addition, the thermal efficiency of the combustion process is increased, reducing fuel demands, as well as producing a more uniform heating profile and subsequently better product quality for many applications. The recirculation of exhaust gas and heat has been utilised for applications in the past. MILD combustion aims to extend the advantages of heat recovery and exhaust gas recirculation beyond the boundaries that are otherwise possible using conventional techniques. The relatively new concept of MILD combustion is a major advancement to the previous technology, and many fundamental issues have not yet been resolved. In a furnace environment, the dilution and preheating of the reactants generate a unique “distributed” reaction zone. There is a need to better understand the structure of this combustion regime and the parameters which control it. To emulate MILD combustion conditions in a controlled experimental environment, a Jet in Hot Coflow (JHC) burner is used in this study. The MILD combustion regime is examined using laser diagnostic techniques. The two key flame intermediates hydroxyl radical (OH) and formaldehyde (H2CO), as well as temperature, are imaged simultaneously to reveal details relating to the reaction zone. Simultaneous imaging enables not only the spatial distribution of each scalar to be investigated, but also the combined effect of the interactions of the three measured scalars. The role of four key variables are investigated as part of this work, namely; the coflow oxygen (O2) level, the jet Reynolds number, fuel dilution and fuel type. Also considered is the effect of surrounding air entrainment into the hot and diluted coflow, which causes a deviation from MILD combustion conditions. The local oxygen (O2) concentration is a key parameter in the establishment of MILD combustion conditions. The effect of lowering the O2 level is to lead to reductions in the OH and temperature in the reaction zone, in effect leading to a less intense reaction. When comparatively high oxygen laden, cold surrounding air mixes with the hot and low O2 coflow, MILD combustion conditions no longer exist. In this case, the flame front can become locally extinguished and subsequent premixing with the high O2 concentrations can lead to increased reaction rates and hence higher temperatures. It is therefore essential that fresh air must be excluded from a MILD combustor to maintain the stable reaction which typifies MILD combustion. It is found that the flame structure is relatively insensitive to both the type of hydrocarbon fuel and the Reynolds number. Each of these parameters can lead to changes in some intermediate species, namely formaldehyde, yet the OH and temperature measurements show comparatively minor variation. Nevertheless, fuel type and Reynolds number, in the form of increased flow convolution, can lead to striking differences in the flame structure. One of the most prominent effects is noted with the dilution of the fuel with various diluents. Some of the flames visually appear lifted, whereas the measurements reveal the occurrence of pre-ignition reactions in the “lifted” region. The unique characteristics of the stabilisation for these particular cases has lead to the term transitional flames. The fundamental aspects discovered by this study shed new light on the reaction zone structure under MILD combustion conditions. By advancing understanding of MILD combustion, future combustion systems will be able to better utilise the efficiency increases and lower pollutant benefits it offers. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1293788 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007.
37

Laser diagnostics in MILD combustion.

Medwell, Paul R. January 2007 (has links)
Despite mounting concerns of looming global warming and fuel shortages, combustion will remain the predominant source of fulfilling the world’s ever-increasing demand for energy in the foreseeable future. In light of these issues, the combustion regime known as Moderate and Intense Low oxygen Dilution (MILD) combustion has the potential of offering increased efficiency whilst lowering pollutant emissions. Essentially, MILD combustion relies on the reuse of the exhaust gases from the combustion process to simultaneously dilute the oxygen concentration of the oxidant stream, and increase its temperature. The benefit of this technique is that it results in a vast reduction in emissions, especially oxides of nitrogen. In addition, the thermal efficiency of the combustion process is increased, reducing fuel demands, as well as producing a more uniform heating profile and subsequently better product quality for many applications. The recirculation of exhaust gas and heat has been utilised for applications in the past. MILD combustion aims to extend the advantages of heat recovery and exhaust gas recirculation beyond the boundaries that are otherwise possible using conventional techniques. The relatively new concept of MILD combustion is a major advancement to the previous technology, and many fundamental issues have not yet been resolved. In a furnace environment, the dilution and preheating of the reactants generate a unique “distributed” reaction zone. There is a need to better understand the structure of this combustion regime and the parameters which control it. To emulate MILD combustion conditions in a controlled experimental environment, a Jet in Hot Coflow (JHC) burner is used in this study. The MILD combustion regime is examined using laser diagnostic techniques. The two key flame intermediates hydroxyl radical (OH) and formaldehyde (H2CO), as well as temperature, are imaged simultaneously to reveal details relating to the reaction zone. Simultaneous imaging enables not only the spatial distribution of each scalar to be investigated, but also the combined effect of the interactions of the three measured scalars. The role of four key variables are investigated as part of this work, namely; the coflow oxygen (O2) level, the jet Reynolds number, fuel dilution and fuel type. Also considered is the effect of surrounding air entrainment into the hot and diluted coflow, which causes a deviation from MILD combustion conditions. The local oxygen (O2) concentration is a key parameter in the establishment of MILD combustion conditions. The effect of lowering the O2 level is to lead to reductions in the OH and temperature in the reaction zone, in effect leading to a less intense reaction. When comparatively high oxygen laden, cold surrounding air mixes with the hot and low O2 coflow, MILD combustion conditions no longer exist. In this case, the flame front can become locally extinguished and subsequent premixing with the high O2 concentrations can lead to increased reaction rates and hence higher temperatures. It is therefore essential that fresh air must be excluded from a MILD combustor to maintain the stable reaction which typifies MILD combustion. It is found that the flame structure is relatively insensitive to both the type of hydrocarbon fuel and the Reynolds number. Each of these parameters can lead to changes in some intermediate species, namely formaldehyde, yet the OH and temperature measurements show comparatively minor variation. Nevertheless, fuel type and Reynolds number, in the form of increased flow convolution, can lead to striking differences in the flame structure. One of the most prominent effects is noted with the dilution of the fuel with various diluents. Some of the flames visually appear lifted, whereas the measurements reveal the occurrence of pre-ignition reactions in the “lifted” region. The unique characteristics of the stabilisation for these particular cases has lead to the term transitional flames. The fundamental aspects discovered by this study shed new light on the reaction zone structure under MILD combustion conditions. By advancing understanding of MILD combustion, future combustion systems will be able to better utilise the efficiency increases and lower pollutant benefits it offers. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1293788 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007.
38

Determination of flame characteristics in a low swirl burner at gas turbine conditions through reaction zone imaging

Periagaram, Karthik Balasubramanian 27 August 2012 (has links)
This thesis explores the effects of operating parameters on the location and shape of lifted flames in a Low Swirl Burner (LSB). In addition, it details the development and analysis of a CH PLIF imaging system for visualizing flames in lean combustion systems. The LSB is studied at atmospheric pressure using LDV and CH PLIF. CH* chemiluminescence is used for high pressure flame imaging. A four-level model of the fluorescing CH system is developed to predict the signal intensity in hydrocarbon flames. Results from imaging an atmospheric pressure laminar flame are used to validate the behavior of the signal intensity as predicted by the model. The results show that the fluorescence signal is greatly reduced at high pressure due to the decreased number of CH molecules and the increased collisional quenching rate. This restricts the use of this technique to increasingly narrow equivalence ratio ranges at high pressures. The limitation is somewhat alleviated by increasing the preheat temperature of the reactant mixture. The signal levels from high hydrogen-content syngas mixtures doped with methane are found to be high enough to make CH PLIF a feasible diagnostic to study such flames. Finally, the model predicts that signal levels are unlikely to be significantly affected by the presence of strain in the flow field, as long as the flames are not close to extinction. The results from the LSB flame investigation reveal that combustor provides reasonably robust flame stabilization at low and moderate values of combustor pressure and reference velocities. However, at very high velocities and pressures, the balance between the reactant velocity and the turbulent flame speed shifts in favor of the former resulting in the flame moving downstream. The extent of this movement is small, but indicates a tendency towards blow off at higher pressures and velocities that may be encountered in real world gas turbine applications. There is an increased tendency of relatively fuel-rich flames to behave like attached flames at high pressure. These results raise interesting questions about turbulent combustion at high pressure as well as provide usable data to gas turbine combustor designers by highlighting potential problems.
39

Premixed flame kinematics in a harmonically oscillating velocity field

Shin, Dong-hyuk 13 November 2012 (has links)
Air pollution regulations have driven modern power generation systems to move from diffusion to premixed combustion. However, these premixed combustion systems are prone to combustion instability, causing high fluctuations in pressure and temperature. This results in shortening of component life, system failure, or even catastrophic disasters. A large number of studies have been performed to understand and quantify the onset of combustion instability and the limit cycle amplitude. However, much work remains due to the complexity of the process associated with flow dynamics and chemistry. This thesis focuses on identifying, quantifying and predicting mechanisms of flame response subject to disturbances. A promising tool for predicting combustion instability is a flame transfer function. The flame transfer function is obtained by integrating unsteady heat release over the combustor domain. Thus, the better understanding of spatio-temporal characteristics of flame is required to better predict the flame transfer function. The spatio-temporal flame response is analyzed by the flame kinematic equation, so called G-equation. The flame is assumed to be a thin interface separating products and reactant, and the interface is governed by the local flow and the flame propagation. Much of the efforts were done to the flame response subject to the harmonic velocity disturbance. A key assumption allowing for analytic solutions is that the velocity is prescribed. For the mathematical tools, small perturbation theory, Hopf-Lax formula and numerical simulation were used. Solutions indicated that the flame response can be divided into three regions, referred to here as the near-field, mid-field, and farfield. In each regime, analytical expressions were derived, and those results were compared with numerical and experimental data. In the near field, it was shown that the flame response grows linearly with the normal component of the velocity disturbance. In the mid field, the flame response shows peaks in gain, and the axial location of these peaks can be predicted by the interference pattern by two characteristic waves. Lastly, in the far field where the flame response decreases, three mechanisms are studied; they are kinematic restoration, flame stretch, and turbulent flow effects. For each mechanism, key parameters are identified and their relative significances are compared.
40

Acoustic Characterization of Flame Blowout Phenomenon

Nair, Suraj 10 February 2006 (has links)
Combustor blowout is a very serious concern in modern land-based and aircraft engine combustors. The ability to sense blowout precursors can provide significant payoffs in engine reliability and life. The objective of this work is to characterize the blowout phenomenon and develop a sensing methodology which can detect and assess the proximity of a combustor to blowout by monitoring its acoustic signature, thus providing early warning before the actual blowout of the combustor. The first part of the work examines the blowout phenomenon in a piloted jet burner. As blowout was approached, the flame detached from one side of the burner and showed increased flame tip fluctuations, resulting in an increase in low frequency acoustics. Work was then focused on swirling combustion systems. Close to blowout, localized extinction/re-ignition events were observed, which manifested as bursts in the acoustic signal. These events increased in number and duration as the combustor approached blowout, resulting an increase in low frequency acoustics. A variety of spectral, wavelet and thresholding based approaches were developed to detect precursors to blowout. The third part of the study focused on a bluff body burner. It characterized the underlying flame dynamics near blowout in greater detail and related it to the observed acoustic emissions. Vorticity was found to play a significant role in the flame dynamics. The flame passed through two distinct stages prior to blowout. The first was associated with momentary strain levels that exceed the flames extinction strain rate, leading to flame holes. The second was due to large scale alteration of the fluid dynamics in the bluff body wake, leading to violent flapping of the flame front and even larger straining of the flame. This led to low frequency acoustic oscillations, of the order of von Karman vortex shedding. This manifested as an abrupt increase in combustion noise spectra at 40-100 Hz very close to blowout. Finally, work was also done to improve the robustness of lean blowout detection by developing integration techniques that combined data from acoustic and optical sensors.

Page generated in 0.158 seconds