• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 51
  • 25
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 338
  • 326
  • 64
  • 60
  • 56
  • 56
  • 52
  • 43
  • 40
  • 39
  • 36
  • 35
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A piezo-electric pressure indicator for internal combustion engines

Lind, Walter John January 1935 (has links)
[No abstract available] / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / [Co-written with Ronald Woodard Klinck] / Graduate
62

An investigation of squish generated turbulence in. I.C. engines

Cameron, Cecilia Dianne January 1985 (has links)
Experiments were performed with a single cylinder C.F.R. engine to provide data for the evaluation of the squish designs. Several reference squish chambers were manufactured for the C.F.R. engine. Flow field data was obtained via hot wire anemometer measurements taken in the cylinder during motored operation of the engine. Pressure data recorded while the engine was operated on natural gas yielded mass burn rate information. Mass burn rate analysis of cylinder pressure data shows the squish design to have greatest impact on the main combustion period (2% to 85% mass burned). A comparison of the reference squish design in these experiments to the disc chamber shows a 32% reduction in the combustion duration and a 30% increase in peak pressure occurring 5 crank angle degrees earlier. The squish-jet design provided the additional effect of a reduction in the ignition delay time (spark to 2% mass burned). The squish-jet design resulted in a reduction of the ignition delay time by 3 crank angle degrees and in a 4% increase in peak pressure occurring 3 crank angle degrees earlier compared to the reference squish chamber. The total combustion duration was 5% less with the squish-jet design. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
63

Noise investigation of small engines /

Khosropour, Mostafa January 1975 (has links)
No description available.
64

Conceptual analysis of a four-stroke linear engine

Petreanu, Sorin. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains xii, 126 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 122-126).
65

An investigation of combustion phenomena associated with detonation in internal combustion engines / by R.G. Barden

Barden, Ronald G. January 1956 (has links)
Typewritten / Includes bibliographical references / 1 v. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Faculty of Engineering, University of Adelaide, 1956
66

Engine instrumentation and data analysis for ignition system testing

Chambers, William Joseph. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. "December 3, 1998." Document formatted into pages; contains xii, 110 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 63-65).
67

Parametric studies using a mathematical model of a two-stroke cycle spark ignition engine

Sathe, Vijay Vishwanath, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
68

Spark ignition engine operation and design for minimum exhaust emission

Huls, Thomas Allan, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1966. / eContent provider-neutral record in process. Description based on print version record.
69

Investigations of HCCI control using duel fuel strategies

Aldawood, Ali Mohammad A. January 2014 (has links)
No description available.
70

Experimental and numerical investigation of performance and emissions in compression ignition engines with alternative fuels

Imran, Shahid January 2013 (has links)
The experimental investigation in this work concerns the compression-ignition (CI) engine combustion process both in normal operation and dual-fuel operation. There is a bulk of literature reporting thermal efficiencies, brake specific fuel consumption (BSFC) and emissions under single and dual fueling conditions in CI engines. Most of the studies lack the full implications of changing load (power output) and speed on these performance indicators. The studies are either restricted to various loads/powers at one engine speed (neglecting the effect of engine speed) or one or two load/power conditions at various speeds (neglecting load variations). There is a scarcity of full engine maps in the open literature (these are the full contours of thermal efficiency or BSFC plotted throughout the power versus speed range of the engine, or the torque versus speed range of the engine). This thesis provides performance and emissions maps for a CI engine using two different fuels (diesel and rapeseed methyl ester used as single fuels) and two gaseous fuels (natural gas and hydrogen) used with two different pilot fuels (diesel and rapeseed methyl ester ) under what is termed dual fueling mode. A novel approach is used to present the performance and emissions over the entire engines operational range. The results are presented as iso- contours of thermal efficiency, volumetric efficiency and brake specific NOX, specific HC and specific CO2 on a power-speed graph throughout the operating range of the engine. Many studies conclude that the emissions, particularly NOX during dual fueling are expected to form in the spatial region around the pilot spray. This region is expected to be subjected to high localised temperatures as the equivalence ratio is close to stoichiometric, thus maximising heat release from combustion. The effect of changing the pilot fuel quantity on performance and emissions is rarely reported. This study addresses this scarcity in the literature and investigates the effect of changing the pilot fuel quantity and type on various combustion and emission parameters. Diesel and rapeseed methyl ester (RME) have been used as pilot fuels for both the natural gas as well as hydrogen and three different pilot fuel settings have been employed for each of the gaseous fuels. The effect of using a different pilot fuel quantity to achieve the same brake mean effective pressure (BMEP) for the two gaseous fuels has been analysed and compared. This thesis also includes a chapter on the computational modeling of the engine esmissions. This study uses combinations of different spray and combustion models to predict in-cylinder pressure, rate of heat release and emissions. The approach employs two combustion models: Unsteady Flamelet Model (UFM) with PDF method and Finite Rate Chemistry (FRC) with stiff chemistry solver implemented through In-Situ Adaptive Tabulation (ISAT) algorithm. Two spray models used includeWAVE and Kelvin Helmohltz Rayleigh Taylor (KHRT) spray models. The UFM coupled with KHRT spray model has been used to predict NOX, CO and CO2 emissions. The model captures the emissions trends well. In-cylinder contours of O2, NO and mass average temperature have also been presented. A chemical mechanism of n-heptane with 29 species and 52 reactions has been used.

Page generated in 0.1032 seconds