• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large Eddy Simulation of a Stagnation Point Reverse Flow Combustor

Parisi, Valerio 17 August 2006 (has links)
In this study, numerical simulations of a low emission lab-scale non-premixed combustor are conducted and analyzed. The objectives are to provide new insight into the physical phenomena in the SPRF (Stagnation Point Reverse Flow) combustor built in the Georgia Tech Combustion Lab, and to compare three Large Eddy Simulation (LES) combustion models (Eddy Break-Up [EBU], Steady Flamelet [SF] and Linear Eddy Model [LEM]) for non-premixed combustion. The nominal operating condition of the SPRF combustor achieves very low NOx and CO emissions by combining turbulent mixing of exhaust gases with preheated reactants and chemical kinetics. The SPRF numerical simulation focuses on capturing the complex interaction between turbulent mixing and heat release. LES simulations have been carried out for a non-reactive case in order to analyze the turbulent mixing inside the combustor. The LES results have been compared to PIV experimental data and the code has been validated. The dominating features of the operational mode of the SPRF combustor (dilution of hot products into reactants, pre-heating and pre-mixing) have been analyzed, and results from the EBU-LES, SF-LES and LEM-LES simulations have been compared. Analysis shows that the LEM-LES simulation achieves the best agreement with the observed flame structure and is the only model that captures the stabilization processes observed in the experiments. EBU-LES and SF-LES do not predict the correct flow pattern because of the inaccurate modeling of sub-grid scale mixing and turbulence-combustion interaction. Limitations of these two models for this type of combustor are discussed.
2

Studies On Fuel-Air Stratification And Combustion Modelling In A CNG-Fuelled Engine

Garg, Manish 03 1900 (has links) (PDF)
In-cylinder fuel-air mixing in a compressed natural gas (CNG)-fuelled, single-cylinder, spark-ignited engine is analysed using a transient three-dimensional computational fluid dynamic model built and run using STAR-CD, a commercial CFD software. This work is motivated by the need for strategies to achieve improved performance in engines utilizing gaseous fuels such as CNG. The transient in-cylinder fuel-air mixing is evaluated for a port gas injection fuelling system and compared with that of conventional gas carburetor system. In this work pure methane is used as gaseous fuel for all the computational studies. It is observed that compared to the premixed gas carburetor system, a substantial level of in-cylinder stratification can be achieved with the port gas injection system. The difference of more than 20% in mass fraction between the rich and lean zones in the combustion chamber is observed for the port gas injection system compared to less than 1% for the conventional premixed system. The phenomenon of stratification observed is very close to the “barrel stratification” mode. A detailed parametric study is undertaken to understand the effect of various injection parameters such as injection location, injection orientation, start of injection, duration of injection and rate of injection. Furthermore, the optimum injection timing is evaluated for various load-speed conditions of the engine. It is also observed that the level of stratification is highest at 50% engine load with a reduced level at 100% load. For low engine loads, the level of stratification is observed to be very low. To analyse the effect of stratification on engine performance, the in-cylinder combustion is modeled using the extended coherent flame model(ECFM). For simulating the ignition process, the arc and kernel tracking ignition model(AKTIM) is used. The combustion model is first validated with measured in-cylinder pressure data and other derived quantities such as heat release rate and mass burn fraction. It is observed that there is a good agreement between measured and simulated values. Subsequently, this model is use to simulate both premixed and stratified cases. It is observed that there is a marginal improvement in terms of overall engine efficiency when the stoichiometric premixed case is compared with the lean stratified condition. However, a major improvement in performance is observed when the lean stratified case is compared with lean premixed condition. The stratified case shows a faster heat release rate which could potentially translate to lower cycle-to-cycle variations in actual engine operation. Also, the stratified cases show as much as 20% lower in-cylinder NOx emissions when compared with the conventional premixed case at the same engine load and speed, underscoring the potential of in-cylinder stratification to achieve improved performance and lower NOx emissions.

Page generated in 0.0759 seconds