• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 93
  • 41
  • 30
  • 29
  • 24
  • 18
  • 18
  • 16
  • 15
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Dynamics of Rotating Detonation Combustor Operation through Continuous Geometry Variation

Ethan Plaehn (17537760) 03 December 2023 (has links)
<p dir="ltr">Rotating detonation combustors are a developing technology with the potential to successfully integrate pressure gain combustion in to modern propulsion devices. Utilization of propagating detonation waves could increase combustion cycle efficiency and reduce combustor size, resulting in an overall increase in system range or payload-carrying capabilities. However, the sensitivity of rotating detonation combustor operation and performance to geometric features, such as injector configuration or chamber length, still needs to be characterized over a wide range of operating conditions. In addition, the hardware configuration that promotes easy ignition into a coherent detonation operating mode does not always maximize combustor performance, especially at low-loss conditions where feedback between chamber and manifold dynamics can exist. Therefore, a rotating detonation combustor with continuously variable geometry capabilities was designed in order to continuously vary any number of hardware design parameters during combustor testing. Not only does the variable geometry combustor enable rapid characterization of operability sensitivity with minimal hardware swaps, it also enables exploration of hysteresis in performance as the combustor is ignited in one configuration and transitioned to a different geometry while maintaining detonative operation.</p><p dir="ltr">The operability of the variable geometry rotating detonation combustor was first characterized with variable fuel injector location. Higher wave speeds were observed at injector locations closest to the oxidizer throat, with decreased wave speed and eventual transition to deflagrative operation occurring at locations farther downstream due to increasing momentum flux ratio. Variation in fuel injection location induced bifurcations in the number of waves, resulting in corresponding changes in wave speed and gross thrust. Hysteresis was observed in these quantities as the direction of injector translation was reversed. Active translation promoted detonative operation of the experiment at conditions and configurations that hitherto operated only in a deflagrative mode with fixed combustor geometry. </p><p dir="ltr">Sensitivity of rotating detonation combustor operation and performance to oxidizer injector pressure drop was characterized using continuous variation of the injector area during combustor operation. Propulsive performance of the combustor was evaluated using thrust and equivalent available pressure, relating them back to reactant supply pressures for assessment of combustor pressure gain. An effective reactant supply pressure was developed in order to combine contributions of both fuel and oxidizer manifold pressures to the total pressure of the system so that pressure gain could be accurately calculated. Pressure gain increased during a test as oxidizer injector area was increased and the corresponding manifold pressure was decreased. At larger injector areas, pressure gain decreased as the operating mode of the combustor transitioned from detonation to deflagration, concomitant with reduction of gross thrust. Modeling of injector recovery time revealed that the injector operated in both choked and unchoked regimes, which was used to explain detonation wave number transitions in the experiment. A broadened range of detonative operability enabled by active variation of combustor geometry resulted in higher performance with lower injector pressure drop.</p><p dir="ltr">Sensitivity of rotating detonation combustor operation and performance to combustor chamber length was characterized using continuous variation of the chamber length during combustor operation. Specific impulse of the combustor remained relatively constant as chamber length was decreased from its maximum values, proving the practicality of efficient packaging for rotating detonation combustors. A limiting chamber length at which combustion could not longer be supported within the chamber was found to exist for every operating condition, resulting in flame blow-out and performance degradation. Modeling of detonation fill height revealed that relatively low specific impulse measurements could be attributed to unburned reactants exiting the chamber, and a more efficient use of reactants was potentially the cause for improved performance at higher mass flow rates as detonation wave number increased and reactant residence time decreased.</p><p dir="ltr">This experiment and the associated analysis has helped further characterize rotating detonation combustor sensitivity to hardware design parameters. The continuously variable geometry capabilities enabled precise identification of geometric parameters that resulted in operating mode transitions. Analysis and modeling of the flow processes within the injector and chamber were used to help explain why these mode transitions occurred, and can be used for future rotating detonation combustor development.</p>
72

Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations

Olmeda Ramiro, Iván 18 January 2024 (has links)
[ES] En los últimos años, el interés por el desarrollo de motores de aviación limpios y eficientes se ha incrementado debido al impacto perjudicial sobre la salud y el medio ambiente ocasionado por los sistemas de combustión convencionales. En este contexto, la comunidad científica ha ido centrando cada vez más sus esfuerzos en el estudio de la combustión turbulenta y la generación de emisiones contaminantes como las partículas de hollín. Con los recientes avances en lo que respecta a potencia de cálculo, las simulaciones de alta fidelidad emergen como una valiosa alternativa para reproducir y analizar estos fenómenos. En concreto, las simulaciones basadas en el modelado de la turbulencia LES son consideradas como una de las herramientas numéricas más prometedoras a la hora de profundizar en la comprensión sobre los complejos procesos dinámicos que caracterizan el flujo reactivo turbulento y predecir emisiones de hollín en aplicaciones aeronáuticas. En el presente trabajo, se estudia y analiza la combustión turbulenta y producción de hollín en aplicaciones de turbina de gas mediante LES de alta fidelidad. El modelado de la combustión se aborda a través de un método flexible de química tabulada basado en el concepto flamelet, el cual es capaz de representar fenómenos químicos complejos con un coste computacional asequible. Además, se emplea una aproximación Euleriana-Lagrangiana para la descripción de la fase gaseosa y las gotas, de forma que se represente correctamente el flujo reactivo multifásico. Para la predicción de hollín en simulaciones computacionalmente eficientes, se emplea un novedoso enfoque de modelado basada en el método seccional y acoplada al modelo de combustión de química tabulada. Esta estrategia de modelado numérica es utilizada en este trabajo para analizar el proceso de combustión y evaluar sus capacidades para predecir hollín y las características de la llama en quemadores de turbina de gas representativos. En primer lugar, se estudia la combustión de flujo bifásico en una llama atmosférica sin torbellinador con inyección líquida de combustible. Este quemador presenta una estructura doble del frente reactivo y las simulaciones numéricas son capaces de capturar adecuadamente los fenómenos de extinción local que tienen lugar en la zona interna de la llama debido a la interacción de las gotas y la turbulencia con el frente reactivo. Posteriormente, se investiga la combustión y producción de hollín en un quemador presurizado con torbellinador que incluye aire secundario de dilución en el interior de la cámara de combustión. La validación del flujo reactivo y hollín se lleva a cabo tanto en la configuración del quemador con aire secundario como sin el mismo, mostrando unas excelentes capacidades predictivas en ambos casos. La presente estrategia de modelado reproduce de forma precisa el complejo patrón de flujo, la estructura de la llama y la dinámica de generación de hollín, además de que es capaz de proporcionar diferentes distribuciones de tamaño de partícula dependiendo de las variaciones en los procesos de formación y oxidación del hollín. En resumen, los diferentes casos prácticos estudiados permiten consolidar y validar la metodología computacional seguida en la presente tesis. La estrategia de modelado basada en química tabulada propuesta demuestra ser lo suficientemente válida y adecuada para reproducir los complejos fenómenos de la combustión y la formación de hollín, en vista de la consistencia del análisis, las precisas predicciones y la concordancia satisfactoria con las medidas experimentales. / [CA] En els últims anys, l'interés pel desenvolupament de motors d'aviació nets i eficients s'ha incrementat a causa de l'impacte perjudicial sobre la salut i el medi ambient ocasionat pels sistemes de combustió convencionals. En aquest context, la comunitat científica ha anat centrant cada vegada més els seus esforços en l'estudi de la combustió turbulenta i la generació d'emissions contaminants com les partícules de sutge. Amb els recents avanços pel que fa a potència de càlcul, les simulacions d'alta fidelitat emergeixen com una valuosa alternativa per a reproduir i analitzar aquests fenòmens. En concret, les simulacions basades en el modelatge de la turbulència LES són considerades com una de les eines numèriques més prometedores a l'hora d'aprofundir en la comprensió sobre els complexos processos dinàmics que caracteritzen el flux reactiu turbulent i predir emissions de sutge en aplicacions aeronàutiques. En el present treball, s'estudia i analitza la combustió turbulenta i la producció de sutge en aplicacions de turbina de gas mitjançant LES d'alta fidelitat. El modelatge de la combustió s'aborda a través d'un mètode flexible de química tabulada basat en el concepte flamelet, el qual és capaç de representar fenòmens químics complexos amb un cost computacional assequible. A més, s'empra una aproximació Euleriana-Lagrangiana per a la descripció de la fase gasosa i les gotes, de manera que es represente correctament el flux reactiu multifàsic. Per a la predicció de sutge en simulacions computacionalment eficients, s'empra un nou plantejament de modelatge basat en el mètode seccional i acoblat al model de combustió de química tabulada. Aquesta estratègia de modelatge numèrica és utilitzada en aquest treball per a analitzar el procés de combustió en cremadors de turbina de gas representatius, i avaluar les seues capacitats per a predir sutge i les característiques de la flama. En primer lloc, s'estudia la combustió de flux bifàsic en una flama atmosfèrica sense remolinador amb injecció líquida de combustible. Aquest cremador presenta una estructura doble del front reactiu i les simulacions numèriques són capaces de capturar adequadament els fenòmens d'extinció local que tenen lloc en la zona interna de la flama a causa de la interacció de les gotes i la turbulència amb el front reactiu. Posteriorment, s'investiga la combustió i producció de sutge en un cremador pressuritzat amb remolinador que inclou aire secundari de dilució a l'interior de la cambra de combustió. La validació del flux reactiu i sutge es duu a terme tant en la configuració del cremador amb aire secundari com sense aquest, mostrant unes estupendes capacitats predictives en tots dos casos. La present estratègia de modelatge reprodueix de manera precisa el complex patró de flux, l'estructura de la flama i la dinàmica de generació de sutge, a més de que és capaç de proporcionar diferents distribucions de grandària de partícula depenent de les variacions en els processos de formació i oxidació del sutge. En resum, els diferents casos pràctics estudiats permeten consolidar i validar la metodologia computacional seguida en la present tesi. L'estratègia de modelatge basada en química tabulada proposada demostra ser prou vàlida i adequada per a reproduir els complexos fenòmens de la combustió i la formació de sutge, en vista de la consistència de l'anàlisi, les precises prediccions i la concordança satisfactòria amb les mesures experimentals. / [EN] In recent years, interest in the development of efficient and clean aviation powerplants has increased due to the detrimental impact on health and the environment caused by conventional combustion systems. In this context, the research community has increasingly focused its efforts on the study of turbulent combustion and the generation of pollutant emissions such as soot particulates. With recent advances in computational power, high-fidelity simulations emerge as a valuable alternative to reproduce and analyze these phenomena. Specifically, Large Eddy Simulations (LES) are considered as one of the most promising numerical tools to provide further insight into the complex dynamic processes that characterize reactive turbulent flows and predict soot emissions in aeronautical applications. In the present work, turbulent combustion and soot production is studied and analyzed in gas turbine engine applications by means of high-fidelity LES. Combustion modelling is addressed by a flexible tabulated chemistry method based on the flamelet concept, which is able to represent complex chemical phenomena with an affordable computational cost. In addition, an Eulerian- Lagrangian description is employed for the gas phase and droplets in order to correctly represent the multiphase flow in spray flames. A recently developed approach based on the sectional method and coupled to the tabulated chemistry framework is considered for soot prediction in computationally efficient simulations. This numerical modelling framework is used in this work to analyze the combustion process and evaluate its capabilities to predict soot and flame characteristics in representative gas turbine burners. First, an atmospheric non-swirled spray flame is studied in terms of two-phase flow combustion. This burner shows a double reaction front structure and local extinction occurs in the inner layer due to both droplet-flame and turbulence-flame interactions, which is properly characterized by LES. Subsequently, combustion and soot production is investigated in a pressurized swirled model combustor which includes secondary dilution jets inside the combustion chamber. The assessment of the reacting flow field and soot is addressed for burner configurations with and without secondary air, showing excellent predictive capabilities in both cases. The present modelling approach accurately reproduce the complex swirled flow field, flame structure and soot dynamics and is able to provide different particle size distributions depending on the variations of the soot formation and oxidation processes. In summary, the different practical cases studied allow to consolidate and validate the computational methodology followed in the present thesis. The proposed tabulated modelling strategy is sufficiently valid and suitable for reproducing complex combustion and soot formation phenomena, in view of the consistency of the analysis, the accurate predictions and the satisfactory agreement with the experimental measurements. / El desarrollo de la presente tesis ha sido posible gracias a una ayuda para la Formación de Profesorado Universitario (FPU 18/03065) perteneciente al Subprograma Estatal de Formación del Ministerio de Ciencia, Innovación y Universidades de España. Además, el trabajo desarrollado está enmarcado en el proyecto ESTiMatE (Emissions SooT ModEl), que ha sido financiado por el consorcio Clean Sky 2 bajo el programa de investigación e innovación Horizonte 2020 de la Unión Europea (acuerdo No. 821418). Las actividades de simulación numérica han sido posibles gracias a la Red Española de Supercomputación y al Centro de Supercomputación de Barcelona por los recursos computacionales proporcionados en MareNostrum, además del grupo PRACE por conceder el acceso a HAWK (GCS, HLRS, Alemania) a través del proyecto SootAero. / Olmeda Ramiro, I. (2023). Assessment of Detailed Combustion and Soot Models for High-Fidelity Aero-Engine Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202284
73

Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction

Villalva Gómez, Rodrigo January 2013 (has links)
No description available.
74

Composite Solution Technique for Efficient Simulation of Incompressible Flow in Complex 2-D AND Axisymmetric Geometries

Rajamani, Bharanidharan 14 October 2002 (has links)
No description available.
75

Influência da geometria da distribuição de temperatura em um combustor vertical de leito fluidizado a óleo combustível. / Influence of temperature distribution geometry on a fuel oil fluidized bed vertical combustor.

CURSINO, Gustavo Gomes Sampaio. 23 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-23T01:44:32Z No. of bitstreams: 1 GUSTAVO GOMES SAMPAIO CURSINO - TESE PPGEQ 2016.pdf: 5939681 bytes, checksum: 518baf4150ea2fb7085706252276b9fa (MD5) / Made available in DSpace on 2018-03-23T01:44:32Z (GMT). No. of bitstreams: 1 GUSTAVO GOMES SAMPAIO CURSINO - TESE PPGEQ 2016.pdf: 5939681 bytes, checksum: 518baf4150ea2fb7085706252276b9fa (MD5) Previous issue date: 2016-04-18 / Este trabalho teve o propósito de determinar o comportamento dos gases na seção de radiação de um combustor de ar que pertence a uma planta industrial. O corpo metálico do equipamento rompeu em seu primeiro ano de operação, devido a um problema conceitual em sua geometria. A fluidodinâmica computacional (CFD), por meio do método dos volumes finitos, foi utilizada para desenvolver um modelo tridimensional que pudesse reproduzir o perfil de temperatura e o comportamento do fluxo do ar de combustão no equipamento. Na simulação, através do uso do software ANSYS CFX, foram utilizados: (i) o modelo de turbulência Reynolds Stress Model (RSM); (ii) as malhas hexaédrica, tetraédrica e prismática; (iii) o modelo de radiação P-1; e (iv) o modelo de combustão Eddy Dissipation Concept (EDC). Como resultado, foram apresentadas quatro possíveis mudanças na geometria do combustor de ar que, caso adotadas, eliminariam os riscos de novas falhas e garantiriam a continuidade operacional da unidade de processo. / This paper has the objective to describe the behavior of the flow and temperature of the flue gas in the radiation section of the vessel used to preheat air in a combustor. The equipment failed in its first operational year, due to a conceptual problem in its geometry. The CFD code based on finite volume method was applied to simulate the physical model of combustor using the ANSYS CFX software, reproducing the main features of the preheater. The simulation had considered: (i) Reynolds Stress Model (RSM) as turbulence model, (ii) The meshes applied were the hexahedral, tetrahedral and prismatic, (iii) P-1 was used as the radiation model and (iv) Eddy Dissipation Concept (EDC) as combustion model. Through the simulation was possible to propose four different kind of combustor geometry modification, that the application of anyone of them would eliminate the risk of new failures, ensuring the unit production availability.
76

Experimental characterisation of the coolant film generated by various gas turbine combustor liner geometries

Chua, Khim Heng January 2005 (has links)
In modern, low emission, gas turbine combustion systems the amount of air available for cooling of the flame tube liner is limited. This has led to the development of more complex cooling systems such as cooling tiles i.e. a double skin system, as opposed to the use of more conventional cooling slots i.e. a single skin system. An isothennal experimental facility has been constructed which can incorporate 10 times full size single and double skin (cooling tile) test specimens. The specimens can be tested with or without effusion cooling and measurements have been made to characterise the flow through each cooling system along with the velocity field and cooling effectiveness distributions that subsequently develop along the length of each test section. The velocity field of the coolant film has been defined using pneumatic probes, hot-wire anemometry and PIV instrumentation, whilst gas tracing technique is used to indicate (i) the adiabatic film cooling effectiveness and (ii) mixing of the coolant film with the mainstream flow. Tests have been undertaken both with a datum low turbulence mainstream flow passing over the test section, along with various configurations in which large magnitudes and scales of turbulence were present in the mainstream flow. These high turbulence test cases simulate some of the flow conditions found within a gas turbine combustor. Results are presented relating to a variety of operating conditions for both types of cooling system. The nominal operating condition for the double skin system was at a coolant to mainstream blowing ratio of approximately 1.0. At this condition, mixing of the mainstream and coolant film was relatively small with low mainstream turbulence. However, at high mainstream turbulence levels there was rapid penetration of the mainstream flow into the coolant film. This break up of the coolant film leads to a significant reduction in the cooling effectiveness. In addition to the time-averaged characteristics, the time dependent behaviour of the .:coolantfilm was. also investigated. In particular, unsteadiness associated with large scale structures in the mainstream flow was observed within the coolant film and adjacent to the tile surface. Relative to a double skin system the single skin geometry requires a higher coolant flow rate that, along with other geometrical changes, results in typically higher coolant to mainstream velocity ratios. At low mainstream turbulence levels this difference in velocity between the coolant and mainstream promotes the generation of turbulence and mixing between the streams so leading to some reduction in cooling effectiveness. However, this higher momentum coolant fluid is more resistant to high mainstream turbulence levels and scales so that the coolant film break up is not as significant under these conditions as that observed for the double skin system. For all the configurations tested the use of effusion cooling helped restore the coolant film along the rear of the test section. For the same total coolant flow, the minimum value of cooling effectiveness observed along the test section was increased relative to the no effusion case. In addition the effectiveness of the effusion patch depends on the amount of coolant injected and the axial location of the patch. The overall experimental data suggested the importance of the initial cooling film conditions together with better understanding of the possible mechanisms that results in the rapid cooling film break-up, such as high turbulence mainstream flow and scales, and this will lead to a more effective cooling system design. This experimental data is also thought to be ideal for the validation of numerical predictions.
77

Influência da variação da razão de alimentação ar/serragem de um combustor ciclônico na composição dos seus produtos gasosos

VASCONCELOS, Adriano Akel January 2008 (has links)
Submitted by Cleide Dantas (cleidedantas@ufpa.br) on 2014-04-11T12:25:14Z No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_InfluenciaVariacaoRazao.pdf: 2017712 bytes, checksum: c97eb6c1192134f2ea8090bac4e210d0 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2014-08-29T17:23:12Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_InfluenciaVariacaoRazao.pdf: 2017712 bytes, checksum: c97eb6c1192134f2ea8090bac4e210d0 (MD5) / Made available in DSpace on 2014-08-29T17:23:12Z (GMT). No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_InfluenciaVariacaoRazao.pdf: 2017712 bytes, checksum: c97eb6c1192134f2ea8090bac4e210d0 (MD5) Previous issue date: 2008 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho foi feito uma análise da combustão em um combustor ciclônico através de medidas experimentais da temperatura e concentração de gases na parede interna da câmara de combustão. Com o objetivo de encontrar parâmetros operacionais adequados para o projeto proposto, a alimentação de ar e serragem do combustor foi variada em razões de equivalência pobres (com excesso de ar) enquanto os dados experimentais eram computados. Os perfis encontrados foram confrontados com a teoria da combustão de sólidos e com os campos de temperatura e concentração de gases encontrados numericamente por Cunha (2005) através do software Fluent V.6.0. Nesta comparação foi possível encontrar boas concordâncias qualitativas entre as temperaturas medida e calculada, porém houve diferenças no quesito concentração de gases. Foi possível também identificar a razão de equivalência mínima para que o combustor ciclônico tivesse em seus produtos gasosos baixos teores de poluentes, como CO. Além disso, ao final deste trabalho foi proposta uma metodologia para o dimensionamento de combustores ciclônicos de acordo com a faixa de consumo de particulado que se deseja incinerar. / In this work it was made an analysis of the combustion in a cyclonic combustor through experimental measures of the temperature and gases concentration in the internal wall of the combustion chamber. With the objective of finding an appropriate operational parameters for the proposed design, the feeding of air and sawdust of combustor was varied in a poor equivalence ratio (with excess of air) while the experimental data were computed. The data profiles obtained were confronted with the theory of the combustion of solids and with the temperature fields and gases concentration founded by Cunha (2005) numerically in the code Fluent V.6.0. In this comparison it was possible to find good qualitative value among the temperatures measured and the one from calculations, however there were differences in the topic concentration of gases. It was possible also to identify the minimum equivalence rate that the cyclonic combustor had in their gaseous products low pollutant tenors, like CO. Besides, at the end of this work a methodology was proposed to find the appropriate size of a cyclonic combustor in agreement with the strip of sawdust consumption that it wants to incinerate.
78

Wall Related Lean Premixed Combustion Modeled with Complex Chemistry

Andrae, Johan January 2002 (has links)
Increased knowledge into the physics and chemistrycontrolling emissions from flame-surface interactions shouldhelp in the design of combustion engines featuring improvedfuel economy and reduced emissions. The overall aim of this work has been to obtain afundamental understanding of wall-related, premixed combustionusing numerical modeling with detailed chemical kinetics. Thiswork has utilized CHEMKIN®, one of the leading softwarepackages for modeling combustion kinetics. The simple fuels hydrogen and methane as well as the morecomplex fuels propane and gasified biomass have been used inthe model. The main emphasis has been on lean combustion, andthe principal flow field studied is a laminar boundary layerflow in two-dimensional channels. The assumption has been madethat the wall effects may at least in principle be the same forlaminar and turbulent flames. Different flame geometries have been investigated, includingfor example autoignition flames (Papers I and II) and premixedflame fronts propagating toward a wall (Papers III and IV).Analysis of the results has shown that the wall effects arisingdue to the surface chemistry are strongly affected by changesin flame geometry. When a wall material promoting catalyticcombustion (Pt) is used, the homogeneous reactions in theboundary layer are inhibited (Papers I, II and IV). This isexplained by a process whereby water produced by catalyticcombustion increases the rate of the third-body recombinationreaction: H+O2+M ⇔ HO2+M. In addition, the water produced at higherpressures increases the rate of the 2CH3(+M) ⇔ C2H6(+M) reaction, giving rise to increased unburnedhydrocarbon emissions (Paper IV). The thermal coupling between the flame and the wall (theheat transfer and development of the boundary layers) issignificant in lean combustion. This leads to a sloweroxidation rate of the fuel than of the intermediatehydrocarbons (Paper III). Finally in Paper V, a well-known problem in the combustionof gasified biomass has been addressed, being the formation offuel-NOx due to the presence of NH3 in the biogas. A hybridcatalytic gas-turbine combustor has been designed, which cansignificantly reduce fuel-NOx formation. Keywords:wall effects, premixed flames, flamequenching, numerical modeling, CHEMKIN, boundarylayerapproximation, gasified biomass, fuel-NOx, hybrid catalytic combustor. / QC 20100504
79

Co-combustion Of Coal And Olive Cake In A Fluidized Bed With Limestone Addition And Freeboard Extension

Akpulat, Onur 01 October 2009 (has links) (PDF)
In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal are investigated in a bubbling fluidized bed with an inside diameter of 102 mm and a height of 900 mm and 1900 mm. Tun&ccedil / bilek lignite coal and Edremit olive cake were used in the experiments as fuels. Temperature distributions along the combustion column were continuously measured. Flue gas concentrations of O2, CO, SO2 and NOx were measured during combustion experiments. Four sets of experiments were performed in order to examine the effect of fuel composition, excess air ratio, freeboard extension and limestone addition on flue gas emissions and combustion efficiency. The olive cake addition to coal were 25, 50, 75 % by wt. The bed temperature on the average was 850 oC. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO2 and NOx emissions decreased. The reason for the decrease of NOx emissions with increasing percentage of olive cake in the fuel mixture was due to a reducing atmosphere created in the combustion column. Mostly combustion losses resulted mainly from the unburnt carbon in the fly ash. With the freeboard extension, noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed. Among the limestones tested, &Ccedil / an limestone gave the best result with Ca/S = 3 at an optimum bed temperature of 850 oC. The SO2 reduction was 87% at this Ca/S ratio. For co-combustion experiments, it was observed that SO2 adsorption efficiency of limestone increased with the addition of olive cake to the fuel mixture.
80

Experimental and numerical investigation of heat and mass transfer due to pulse combustor jet impingement

Psimas, Michael J. 06 April 2010 (has links)
Under certain circumstances pulse combustors have been shown to improve both heat transfer and drying rate when compared to steady flow impingement. Despite this potential, there have been few investigations into the use of pulse combustor driven impingement jets for industrial drying applications. The research presented here utilized experimental and numerical techniques to study the heat transfer characteristics of these types of oscillating jets when impinging on solid surfaces and the heat and mass transfer when drying porous media. The numerical methods were extensively validated using laboratory heat flux and drying data, as well as correlations from literature. As a result, the numerical techniques and methods that were developed and employed in this work were found to be well suited for the current application. It was found that the pulsating flows yielded elevated heat and mass transfer compared to similar steady flow jets. However, the numerical simulations were used to analyze not just the heat flux or drying, but also the details of the fluid flow in the impingement zone that resulted in said heat and mass transport. It was found that the key mechanisms of the enhanced transfer were the vortices produced by the oscillating flow. The characteristics of these vortices such as the size, strength, location, duration, and temperature, determined the extent of the improvement. The effects of five parameters were studied: the velocity amplitude ratio, oscillation frequency, the time-averaged bulk fluid velocity at the tailpipe exit, the hydraulic diameter of the tailpipe, and the impingement surface velocity. Analysis of the resulting fluid flow revealed three distinct flow types as characterized by the vortices in the impingement zone, each with unique heat transfer characteristics. These flow types were: a single strong vortex that dissipated before the start of the next oscillation cycle, a single persistent vortex that remained relatively strong at the end of the cycle, and a strong primary vortex coupled with a short-lived, weaker secondary vortex. It was found that the range over which each flow type was observed could be classified into distinct flow regimes. The secondary vortex and persistent vortex regimes were found to enhance heat transfer. Subsequently, transition criteria dividing these regimes were formed based on dimensionless parameters. The critical dimensionless parameters appeared to be the Strouhal number, a modified Strouhal number, the Reynolds number, the velocity amplitude ratio, and the H/Dh ratio. Further study would be required to determine if these parameters offer similar significance for other configurations.

Page generated in 0.0316 seconds