• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 92
  • 40
  • 30
  • 29
  • 24
  • 18
  • 18
  • 16
  • 15
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Numerical Investigation on CO Emissions in Lean Premixed Combustion / 希薄予混合燃焼におけるCO排出に関する数値解析による研究

Yunoki, Keita 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23882号 / 工博第4969号 / 新制||工||1776(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 中部 主敬, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
52

Experimental Investigation of Aerodynamics and Combustion Properties of a Multiple-Swirler Array

Kao, Yi-Huan 18 September 2014 (has links)
No description available.
53

Design and Development of a Porous Injector for Gaseous Fuels Injection in Gas Turbine Combustor

Meeboon, Non 30 June 2015 (has links)
No description available.
54

Experimental Investigation into the High Altitude Relight Characteristics of a Three-Cup Combustor Sector

Denton, Michael J. January 2017 (has links)
No description available.
55

MODELING AND SIMULATION OF REACTING FLOWS IN LEAN-PREMIXED SWIRL-STABLIZED GAS TURBINE COMBUSTOR

TOKEKAR, DEVKINANDAN MADHUKAR 03 April 2006 (has links)
No description available.
56

Fluid field analysis on a flexible combustor for a hybrid Solar / Brayton system : A numerical study

JACQUEMARD, PAUL January 2020 (has links)
Recent improvements to concentrating solar dish systems lead to further focus on hybridization systems for small-scale power generation applications. Variability of the solar load creates new requirements for combustion systems. This thesis presents a CFD simulation of the air flow inside a new combustor design for the combination of an impinging air solar receiver and a MGT. The system consists of a LPP tubular combustor with radial main swirler and central pilot burner. Focus is made on the pressure loss at the downstream impinging cooling wall for appropriate flow distribution between reacting and bypass air. Heat transfer is not studied due to lack of time. A fully-hexahedral multi-zones mesh of the system without fuel injection has been generated with Ansys ICEM software, making use of its O-grid capabilities. A realizable k-epsilon model is used for turbulence modelling. Several impinging hole’s diameters are studied to find the right balance between the two streams. Streamlines are also observed to confirm the location of recirculation zones and recommend design improvements. / Nya förbättringar av koncentrerade solskålssystem leder till ytterligare fokus på hybridsystem för småskaliga applikationer för elproduktion. Ojämn solstrålning skapar nya krav på förbränningssystem. Detta examensarbete presenterar en CFD-simulering av luftflödet i en ny förbränningsdesign för en kombination av en solfångare med forcerad konvektionskylning och en mikrogasturbin (MGT). Systemet består av en LPP-rörbrännare med radiellt virvelsystem och central pilotbrännare. Studien fokuserar på tryckförlusten vid slaghålsväggen, som används för kylning vid förbränning, och lämplig flödesfördelning mellan reagerande- och förbigående flöde. Värmeöverföring studeras inte på grund av tidsbrist. Ett helt sexkantigt nät med flera zoner i systemet utan bränsleinsprutning har genererats med Ansys ICEM-programvara som använder O-nätfunktioner. En realiserbar k-epsilon-modell används för turbulensmodellering. Flera slaghålsdiametrar studeras för att hitta rätt balans mellan de två strömmarna. Även strömlinjer observeras för att bekräfta placeringen av återcirkulationszoner och kunna rekommendera förbättringar av designen.
57

Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model

Abraham, Santosh 05 November 2008 (has links)
Combustion designers have considered back-side impingement cooling as the solution for modern DLE combustors. The idea is to provide more cooling to the deserved local hot spots and reserve unnecessary coolant air from local cold spots. Therefore, if accurate heat load distribution on the liners can be obtained, then an intelligent cooling system can be designed to focus more on the localized hot spots. The goal of this study is to determine the heat transfer and pressure distribution inside a typical can-annular gas turbine combustor. This is one of the first efforts in the public domain to investigate the convective heat load to combustor liner due to swirling flow generated by swirler nozzles. An experimental combustor test model was designed and fitted with a swirler nozzle provided by Solar Turbines Inc. Heat transfer and pressure distribution measurements were carried out along the combustor wall to determine the thermo-fluid dynamic effects inside a combustor. The temperature and heat transfer profile along the length of the combustor liner were determined and a heat transfer peak region was established. Constant-heat-flux boundary condition was established using two identical surface heaters, and the Infrared Thermal Imaging system was used to capture the real-time steady-state temperature distribution at the combustor liner wall. Analysis on the flow characteristics was also performed to compare the pressure distributions with the heat transfer results. The experiment was conducted at two different Reynolds numbers (Re 50,000 and Re 80,000), to investigate the effect of Reynolds Number on the heat transfer peak locations and pressure distributions. The results reveal that the heat transfer peak regions at both the Reynolds numbers occur at approximately the same location. The results from this study on a broader scale will help in understanding and predicting swirling flow effects on the local convective heat load to the combustor liner, thereby enabling the combustion engineer to design more effective cooling systems to improve combustor durability and performance. / Master of Science
58

Numerical Analysis of Flow and Heat Transfer through a Lean Premixed Swirl Stabilized Combustor Nozzle

Kedukodi, Sandeep 11 April 2017 (has links)
While the gas turbine research community is continuously pursuing development of higher cyclic efficiency designs by increasing the combustor firing temperatures and thermally resistant turbine vane / blade materials, a simultaneous effort to reduce the emission levels of high temperature driven thermal NOX also needs to be addressed. Lean premixed combustion has been found as one of the solutions to these objectives. However, since less amount of air is available for backside cooling of liner walls, it becomes very important to characterize the convective heat transfer that occurs on the inside wall of the combustor liners. These studies were explored using laboratory scale experiments as well as numerical approaches for several inlet flow conditions under both non-reacting and reacting flows. These studies may be expected to provide valuable insights for the industrial design communities towards identifying thermal hot spot locations as well as in quantifying the heat transfer magnitude, thus aiding in effective designs of the liner walls. Lean premixed gas turbine combustor flows involve strongly coupled interactions between several aspects of physics such as the degree of swirl imparted by the inlet fuel nozzle, premixing of the fuel and incoming air, lean premixed combustion within the combustor domain, the interaction of swirling flow with combustion driven heat release resulting in flow dilation, the resulting pressure fluctuations leading to thermo-acoustic instabilities there by creating a feedback loop with incoming reactants resulting in flow instabilities leading to flame lift off, flame extinction etc. Hence understanding combustion driven swirling flow in combustors continues to be a topic of intense research. In the present study, numerical predictions of swirl driven combustor flows were analyzed for a specific swirl number of an industrial fuel nozzle (swirler) using a commercial computational fluid dynamics tool and compared against in-house experimental data. The latter data was obtained from a newly developed test rig at Applied Propulsion and Power Laboratory (APPL) at Virginia Tech. The simulations were performed and investigated for several flow Reynolds numbers under non-reacting condition using various two equation turbulence models as well as a scale resolving model. The work was also extended to reacting flow modeling (using a partially premixed model) for a specific Reynolds number. These efforts were carried out in order investigate the flow behavior and also characterize convective heat transfer along the combustor wall (liner). Additionally, several parametric studies were performed towards investigating the effect of combustor geometry on swirling flow and liner hear transfer; and also to investigate the effect of inlet swirl on the jet impingement location along the liner wall under both non-reacting as well as reacting conditions. The numerical results show detailed comparison against experiments for swirling flow profiles within the combustor under reacting conditions indicating a good reliability of steady state modeling approaches for reacting conditions; however, the limitations of steady state RANS turbulence models were observed for non-reacting swirling flow conditions, where the flow profiles deviate from experimental observations in the central recirculation region. Also, the numerical comparison of liner wall heat transfer characteristics against experiments showed a sensitivity to Reynolds numbers. These studies offer to provide preliminary insights of RANS predictions based on commercial CFD tools in predicting swirling, non-reacting and reacting flow and heat transfer. They can be extended to reacting flow heat transfer studies in future and also may be upgraded to unsteady LES predictions to complement future experimental observations conducted at the in-house test facility. / Ph. D.
59

3D Numerical Simulation to Determine Liner Wall Heat Transfer and Flow through a Radial Swirler of an Annular Turbine Combustor

Kumar, Vivek Mohan 26 August 2013 (has links)
RANS models in CFD are used to predict the liner wall heat transfer characteristics of a gas turbine annular combustor with radial swirlers, over a Reynolds number range from 50,000 to 840,000. A three dimensional hybrid mesh of around twenty five million cells is created for a periodic section of an annular combustor with a single radial swirler. Different turbulence models are tested and it is found that the RNG k-e model with swirl correction gives the best comparisons with experiments. The Swirl number is shown to be an important factor in the behavior of the resulting flow field. The swirl flow entering the combustor expands and impinges on the combustor walls, resulting in a peak in heat transfer coefficient. The peak Nusselt number is found to be quite insensitive to the Reynolds number only increasing from 1850 at Re=50,000 to 2200 at Re=840,000, indicating a strong dependence on the Swirl number which remains constant at 0.8 on entry to the combustor. Thus the peak augmentation ratio calculated with respect to a turbulent pipe flow decreases with Reynolds number. As the Reynolds number increases from 50,000 to 840,000, not only does the peak augmentation ratio decrease but it also diffuses out, such that at Re=840,000, the augmentation profiles at the combustor walls are quite uniform once the swirl flow impinges on the walls. It is surmised with some evidence that as the Reynolds number increases, a high tangential velocity persists in the vicinity of the combustor walls downstream of impingement, maintaining a near constant value of the heat transfer coefficient. The computed and experimental heat transfer augmentation ratios at low Reynolds numbers are within 30-40% of each other. / Master of Science
60

Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors

Carmack, Andrew Cardin 31 May 2012 (has links)
A comparison study between axial and radial swirler performance in a gas turbine can combustor was conducted by investigating the correlation between combustor flow field geometry and convective heat transfer at cold flow conditions for Reynolds numbers of 50,000 and 80,000. Flow velocities were measured using Particle Image Velocimetry (PIV) along the center axial plane and radial cross sections of the flow. It was observed that both swirlers produced a strong rotating flow with a reverse flow core. The axial swirler induced larger recirculation zones at both the backside wall and the central area as the flow exits the swirler, and created a much more uniform rotational velocity distribution. The radial swirler however, produced greater rotational velocity as well as a thicker and higher velocity reverse flow core. Wall heat transfer and temperature measurements were also taken. Peak heat transfer regions directly correspond to the location of the flow as it exits each swirler and impinges on the combustor liner wall. Convective heat transfer was also measured along the liner wall of a gas turbine annular combustor fitted with radial swirlers for Reynolds numbers 210000, 420000, and 840000. The impingement location of the flow exiting from the radial swirler resulted in peak heat transfer regions along the concave wall of the annular combustor. The convex side showed peak heat transfer regions above and below the impingement area. This behavior is due to the recirculation zones caused by the interaction between the swirlers inside the annulus. / Master of Science

Page generated in 0.0768 seconds