• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations

Migliorini, A., Piccioni, G., Capaccioni, F., Filacchione, G., Bockelée-Morvan, D., Erard, S., Leyrat, C., Combi, M. R., Fougere, N., Crovisier, J., Taylor, F. W., De Sanctis, M. C., Capria, M. T., Grassi, D., Rinaldi, G., Tozzi, G. P., Fink, U. 12 April 2016 (has links)
Context. Studying the coma environment of comet 67P/Churyumov-Gerasimenko (67P) is one of the primary scientific goals of the VIRTIS experiment on the ESA Rosetta mission. Aims. The distribution and variability of water vapour and carbon dioxide in the comet's coma are needed to estimate their production rate, abundances in the nucleus, and the spatial distribution of the active regions. Methods. Infrared emission lines from vibrational bands of water and carbon dioxide at 2.67 and 4.27 mu m, respectively, were observed by the VIRTIS-M imaging channel and mapped from close to the nucleus up to similar to 10 km altitude with a resolution of similar to 40 m/px. A dataset consisting of 74 observations in the 1 5 mu m spectral range acquired from 8 to 14 April 2015 when 67P was at a heliocentric distance of 1.9 AU is analysed in this work. A statistical correlation between the gas distribution and the surface's active regions was performed. Results. The maximum H2O emission is observed within 3 km from the nucleus and is mainly concentrated above two active regions, Aten-Babi and Seth-Hapi, while the CO2 distribution appears more uniform with significant emissions coming from both the "head" and southern latitude regions. In the equatorial region, the column densities of both species decrease with altitude, although CO2 decreases more rapidly than H2O. The calculated CO2/H2O column density ratios above Aten-Babi and Seth-Hapi are 2.4 +/- 0.6% and 3.0 +/- 0.7%, respectively. A value equal to 3.9 +/- 1.0% is observed at equatorial latitudes in the region encompassing Imothep. Conclusions. VIRTIS-M has mapped the distribution of water vapour and carbon dioxide around the nucleus of 67P with unprecedented spatial resolution. The different water and carbon dioxide outgassing above the surface, seen in the VIRTIS-M data, might be indicative of a different thermal history of the northern and southern hemispheres of 67P.
2

Analysis of the dust jet imaged by Rosetta VIRTIS-M in the coma of comet 67P/Churyumov-Gerasimenko on 2015 April 12

Tenishev, V., Fougere, N., Borovikov, D., Combi, M. R., Bieler, A., Hansen, K. C., Gombosi, T. I., Migliorini, A., Capaccioni, F., Rinaldi, G., Filacchione, G., Kolokolova, L., Fink, U. 16 November 2016 (has links)
This work is a part of a more global effort aimed at understanding and interpreting in situ and remote sensing data acquired by instruments on board Rosetta. This study aims at deriving the dust mass source rate and the location of the dust jet source observed by Rosetta VIRTIS-M on 2015 April 12. The analysis is performed by means of the coupled kinetic modelling of gas and dust in the coma of comet 67P/Churyumov-Gerasimenko, which were used for calculating the coma brightness as it would be seen from the Rosetta spacecraft. The dust mass production rate and a possible location of the jet origin needed to explain the Rosetta VIRTIS-M dust brightness image were inferred by comparing the calculated brightness with VIRTIS-M data. Our analysis suggests that the dust mass production rate needed to maintain the observed jet is about 1.9 kg s(-1). According to our analysis, the location of the observed jet surface footprint is outside of the nucleus area characterized by the highest gas production rate, which suggests that gas and dust source rates are not necessarily proportional to each other across the entire nucleus surface. The inferred location of the possible jet origin is consistent with that of the observed active pits. In this paper, we show that the jet intensity is variable in time, and has a lifetime of at least 10 h.
3

Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations

Bockelée-Morvan, Dominique, Crovisier, J., Erard, S., Capaccioni, F., Leyrat, C., Filacchione, G., Drossart, P., Encrenaz, T., Biver, N., de Sanctis, M.-C., Schmitt, B., Kührt, E., Capria, M.-T., Combes, M., Combi, M., Fougere, N., Arnold, G., Fink, U., Ip, W., Migliorini, A., Piccioni, G., Tozzi, G. 16 November 2016 (has links)
Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from 2015 July to September, i.e. around perihelion (2015 August 13), with the high-resolution channel of the Visible and Infrared Thermal Imaging Spectrometer instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H2O, CO2, (CO2)-C-13, OCS, and CH4 detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated Southern hemisphere, as revealed by H2O and CO2 raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed 6 d after perihelion. In the meantime, CO2, CH4, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32, 0.47, and 0.18 per cent, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO2 should be representative of the 67P nucleus original composition, and indicates that 67P is a CO2-rich comet. Comparison with abundance ratios measured in the Northern hemisphere shows that seasons play an important role in comet outgassing. The low CO2/H2O values measured above the illuminated Northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.
4

Instrumental and environmental effects on RPC-ICA measurements of the cometary ion dynamics at comet 67P/CG

Berčič, Laura January 2017 (has links)
Observations provided from RPC-ICA in combination with the data from RPC-MAG and ROSINA-COPS show that many aspects of the time variability of the detected ions is correlated with the magnetic field or -- to a smaller extent -- with neutral atmosphere density. We also show that not all changes in the cometary ion data reflect the nature of the plasma dynamics, but are a consequence of the instrumental limitations. The main outcome of the article in Appendix 1 is that the cometary ions can be divided into two populations with distinct characteristics. One population we termed the convecting population, is accelerated to higher energies through the interaction with the solar wind. The other population we termed the expanding population is moving radially away from the nucleus in the terminator plane. Both populations exhibit a significant anti-sunward component.In addition we present in this thesis a case with observations day-side of the terminator plane. There we show how the expanding population has a sunward component, consistent with initial radial expansion of the ions from the nucleus which gradually turn into an anti-sunward flow which is then observed in the terminator plane.
5

Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko

Fougere, Nicolas, Altwegg, K., Berthelier, J.-J., Bieler, A., Bockelée-Morvan, D., Calmonte, U., Capaccioni, F., Combi, M. R., De Keyser, J., Debout, V., Erard, S., Fiethe, B., Filacchione, G., Fink, U., Fuselier, S. A., Gombosi, T. I., Hansen, K. C., Hässig, M., Huang, Z., Le Roy, L., Leyrat, C., Migliorini, A., Piccioni, G., Rinaldi, G., Rubin, M., Shou, Y., Tenishev, V., Toth, G., Tzou, C.-Y. 16 November 2016 (has links)
We analyse the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) - the Double Focusing Mass Spectrometer data between 2014 August and 2016 February to examine the effect of seasonal variations on the four major species within the coma of 67P/Churyumov-Gerasimenko (H2O, CO2, CO, and O-2), resulting from the tilt in the orientation of the comet's spin axis. Using a numerical data inversion, we derive the non-uniform activity distribution at the surface of the nucleus for these species, suggesting that the activity distribution at the surface of the nucleus has not significantly been changed and that the differences observed in the coma are solely due to the variations in illumination conditions. A three-dimensional Direct Simulation Monte Carlo model is applied where the boundary conditions are computed with a coupling of the surface activity distributions and the local illumination. The model is able to reproduce the evolution of the densities observed by ROSINA including the changes happening at equinox. While O-2 stays correlated with H2O as it was before equinox, CO2 and CO, which had a poor correlation with respect to H2O pre-equinox, also became well correlated with H2O post-equinox. The integration of the densities from the model along the line of sight results in column densities directly comparable to the VIRTIS-H observations. Also, the evolution of the volatiles' production rates is derived from the coma model showing a steepening in the production rate curves after equinox. The model/data comparison suggests that the seasonal effects result in the Northern hemisphere of 67P's nucleus being more processed with a layered structure while the Southern hemisphere constantly exposes new material.
6

Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS- M

Rinaldi, G., Fink, U., Doose, L., Tozzi, G.P., Capaccioni, F., Filacchione, G., Bockelée-Morvan, D., Leyrat, C., Piccioni, G., Erard, S., Bieler, A., Błęcka, M., Ciarniello, M., Combi, M., Fougere, N., Migliorini, A., Palomba, E., Raponi, A., Taylor, F. 09 December 2016 (has links)
An investigation is presented of the dust scattering in the coma of 67P/Churyumov-Gerasimenko for the dates of 2015 February 28, March 15 and April 27. A comparison of the morphology of dust continuum maps at 1.1 mu m and gas emission shows that for the above dates the spatial distribution of the dust is strongly correlated with H2O but not with CO2 emission. For April 27, the radial profile on the illuminated side of the nucleus in the inner coma agrees well with the direct simulation Monte Carlo (DSMC) calculations as the dust is accelerating and flows outwards distribution of the dust is narrower than the broader emission of the gas. Af. values are 1.13 m for 2015 February 28, 2.02 m for April 27, while local values for March 15 are 2.3-5.3 m, depending on the nucleus illumination. In the inner coma, the spectral reflectivity from 0.35 to 3.5 mu m displays a red slope with a change at around 1 mu m. From 0.35 to 0.8 mu m, the values range from 9 to 12 +/- 1 per cent per 100 nm both on the sunlit side and on the dark side. From 1 to 2.5 mu m, the values are 1.7 +/- 0.2 per cent per 100 nm on the sunlit side and 3 +/- 1 per cent per 100 nm on the dark side. For the August 26 jet, no significant increase of the colour gradient with distance from the nucleus could be observed, nor any significant difference detected between the jet and the background coma.
7

Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta

Fougere, N., Altwegg, K., Berthelier, J.-J., Bieler, A., Bockelée-Morvan, D., Calmonte, U., Capaccioni, F., Combi, M. R., De Keyser, J., Debout, V., Erard, S., Fiethe, B., Filacchione, G., Fink, U., Fuselier, S. A., Gombosi, T. I., Hansen, K. C., Hässig, M., Huang, Z., Le Roy, L., Leyrat, C., Migliorini, A., Piccioni, G., Rinaldi, G., Rubin, M., Shou, Y., Tenishev, V., Toth, G., Tzou, C.-Y. 30 March 2016 (has links)
Context. Since its rendezvous with comet 67P/Churyumov-Gerasimenko (67P), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the so-called coma, and provide complementary results with remote sensing and in situ measurement techniques, respectively. The data from both ROSINA and VIRTIS instruments suggest that the source regions of H2O and CO2 are not uniformly distributed over the surface of the nucleus even after accounting for the changing solar illumination of the irregularly shaped rotating nucleus. The source regions of H2O and CO2 are also relatively different from one another. Aims. The use of a combination of a formal numerical data inversion method with a fully kinetic coma model is a way to correlate and interpret the information provided by these two instruments to fully understand the volatile environment and activity of comet 67P. Methods. In this work, the nonuniformity of the outgassing activity at the surface of the nucleus is described by spherical harmonics and constrained by ROSINA-DFMS data. This activity distribution is coupled with the local illumination to describe the inner boundary conditions of a 3D direct simulation Monte-Carlo (DSMC) approach using the Adaptive Mesh Particle Simulator (AMPS) code applied to the H2O and CO2 coma of comet 67P. Results. We obtain activity distribution of H2O and CO2 showing a dominant source of H2O in the Hapi region, while more CO2 is produced in the southern hemisphere. The resulting model outputs are analyzed and compared with VIRTIS-M/-H and ROSINADFMS measurements, showing much better agreement between model and data than a simpler model assuming a uniform surface activity. The evolution of the H2O and CO2 production rates with heliocentric distance are derived accurately from the coma model showing agreement between the observations from the different instruments and ground-based observations. Conclusions. We derive the activity distributions for H2O and CO2 at the surface of the nucleus described in spherical harmonics, which we couple to the local solar illumination to constitute the boundary conditions of our coma model. The model presented reproduces the coma observations made by the ROSINA and VIRTIS instruments on board the Rosetta spacecraft showing our understanding of the physics of 67P’s coma. This model can be used for further data analyses, such as dust modeling, in a future work.

Page generated in 0.0281 seconds