• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An evaluation of the feasibility of implementing energy efficiency measures in commercial buildings in Hong Kong

Hsiao, Hou-yip., 蕭厚業. January 2012 (has links)
In 2006, over 160 countries have ratified the Kyoto Protocol, which is an international agreement concerning the climate change. It sets binding targets for reducing greenhouse gas (“GHG”) emissions (UNFCCC, 2006) and these countries were committed to do so. Reduction on GNG emission becomes a common but differentiated responsibility over these countries, including China and Hong Kong. In Hong Kong, The Government of the Hong Kong Special Administrative Region (“HKSAR”) was also committed to reduce GHG emissions by implementing difference measures (EPD, 2010). In view of 60 percent of GHG emission in Hong Kong is generated by electricity generation, reduction on electricity consumption for building operations is the main means of achieving reduction on GHG emissions. Since Hong Kong had been treated as international financial centre, over 60 percent of the total electricity consumption was contributed by the commercial sector. To promote energy efficiency so as to accomplish reduction on electricity consumption, both HKSAR and other green organization, such as BEAM Society and U.S. Green Building Council, had set up numerous reference guidelines. However, these guidelines may applicable to new buildings but not in most commercial building in Hong Kong which were aged and multi-owned. In these aged and multi-owned commercial building, the concern of energy efficiency was not involved during design stage. In view of durable nature of commercial building, energy efficiency hardly be achieved unless substantial implementation of measures. However, capital cost and alteration work were needed to be considered for such implementation which causing difficulties for most of the single block building. As advised by Electrical and Mechanical Department, the Building Manager is one of the key persons in building energy efficiency and conservation as it is the one who operate all building services installation so as to suit the needs of the occupants. This dissertation is an attempt to evaluate the feasibility of implementing energy efficiency measures in these commercial buildings in Hong Kong from the management point of view. / published_or_final_version / Housing Management / Master / Master of Housing Management
2

A cross-sectional study on sustainable solutions for commercial property in the city of Johannesburg for 2012

Crous, Jaco 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2012. / This study determined the status, in 2012, of the implementation of Sustainable solutions (SS) to commercial buildings in the City of Johannesburg. The term “going green” was seen as an alternative approach to business, but demonstrated necessity in the property industry. As greenhouse gas emissions drive the rising average global temperature at an alarming rate, the business environment cannot only be aware of the impact that business industries have on the livelihood of the growing population, but need to act promptly to ensure sustainability. Environmental sustainability is an important topic in decision making for businesses in South Africa and this study grouped renewable energy (RE) and energy efficiency (EE) to create sustainable solutions as the main concept of environmental sustainability. Renewable energy refers to finding an energy source like the sun or wind, but the main focus is on the purpose of sustainability of the energy resource and the supply. Eskom obtains 97% of their electricity for South Africa from coal power plants, but the reality is that coal is a limited resource that will not be available indefinitely unlike renewable energy. Energy efficiency on the other hand focuses on reducing the energy requirements of commercial buildings. As this concept received sufficient attention in South Africa, the present study was conducted to obtain further information to drive energy efficient practices. With energy efficiency, making basic adjustments in the design of new buildings to use less electricity can greatly contribute to their longevity and reduce the overall running costs that in turn enhance the sustainability for organisations that own or manage properties. By gathering the principals for renewable energy from natural resources and implementing energy efficient practices, the concept of sustainable solutions was conceived. The implementation of sustainable solutions also increases the value of properties, fosters economic enhancement, fosters socioeconomic improvement and most importantly improves the environment by reducing carbon emissions.
3

Energy efficient commercial buildings : a study of natural daylighting in the context of adaptive reuse

Crowley, John Stephen January 1982 (has links)
Thesis (M. Arch.)--Massachusetts Institute of Technology, Dept. of Architecture, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH. / Includes bibliographical references (p. 157-159). / Daylighting is a powerful design element which can have a dramatic impact on people's perception of space, physical and psychological well-being as well as a building's annual and daily energy requirements. Understanding of the way daylight can penetrate a space , dramatize materials, create shadows and patterns, and is reflected and diffused gives an appreciation for light energy as a natural force. Historic precedents, and the response of contemporary architecture to the problems and possibilities of daylighting demonstrate the changes in values, and attitudes about the role of natural light and ventilation as they have been constructed in the landscape over a period of centuries. Three areas are investigated in considering the role of natural daylighting in the context of adaptive reuse. One is the historical evolution of atriums, their use as climate conditioners, as building form generators and as receptors of daylight. The second area is a qualitative and quantitative study of daylight. Topics explored are glazing location, diffusion and reflection elements, and psychological effects, impact on annual energy consumption and physical modeling. The third area of study is the development of a generic atrium piece which is the principal form and organizational generator of a design proposal for the reuse of a typical early 20th century warehouse building. / by John Stephen Crowley. / M.Arch.
4

Exploring the feasibility of passive cooling technology in the non-residential building sector over various climatic regions in the United States

Deshpande, Devyani S. 17 December 2011 (has links)
The thesis presents a comprehensive overview of the context and significance of ventilation cooling techniques and their feasibility in the United States. Passive cooling is one of the more architecturally interesting ways by which architects could make buildings energy efficient. There is great interest in passive systems since they can lead to a huge reduction of energy costs and support more sustainable building solutions. A number of ventilation system options are available to fill the need for a lower cost alternative to active [conventional] systems. It is the non-residential sector where energy consumption is of most concern and integrating passive natural ventilation in new non-residential buildings is receiving a lot of attention internationally and the U.S. building industry. Interest in improving air quality by passive ventilation is also increasing. / Department of Architecture
5

Agent-based modeling of commercial building stocks for energy policy and demand response analysis

Zhao, Fei 04 April 2012 (has links)
Managing a sustainable built environment with a large number of buildings rests on the ability to assess and improve the performance of the building stock over time. Building stock models are cornerstones to the assessment of the combined impact of energy-related building interventions across different spatial and temporal scales. However, such models, particularly those accounting for both physical formulation and social behaviors of the underlying buildings, are still in their infancy. This research strives to more thoroughly examine how buildings perform aggregately in energy usage by focusing on how to tackled three major technical challenges: (1) quantifying building energy performance in an objective and scalable manner, (2) mapping building stock model space to real-world data space, and (3) quantifying and evaluating energy intervention behaviors of a building stock. This thesis hypothesizes that a new paradigm of aggregation of large-scale building stocks can lead to (1) an accurate and efficient intervention analysis model and (2) a functionally comprehensive decision support tool for building stock energy intervention analysis. Specifically, this thesis presents three methodologies. To address the first challenge, this thesis develops a normative building physical energy model that can rapidly estimate single building energy performance with respect to its design and operational characteristics. To address the second challenge, the thesis proposes a statistical procedure using regression and Markov chain Monte Carlo (MCMC) sampling techniques that inverse-estimate building parameters based on building stock energy consumption survey data. The outcomes of this statistical procedure validate the approach of using prototypical buildings for two types of intervention analysis: energy retrofit and demand response. These two cases are implemented in an agent-based modeling and simulation (ABMS) framework to tackle the third challenge. This thesis research contributes to the body of knowledge pertaining to building energy modeling beyond the single building scale. The proposed framework can be used by energy policy makers and utilities for the evaluation of energy retrofit incentives and demand-response program economics.
6

Energy Footprinting and Human-Centric Building Co-Optimization with Multi-Task Deep Reinforcement Learning

Wei, Peter January 2021 (has links)
In the United States, commercial and residential buildings are responsible for 40% of total energy consumption, which provides an important opportunity for energy impact. As we spend the majority of our active moments during the day in transportation, commercial buildings, streets, and infrastructure, some of the greatest opportunities to reduce energy usage occur when we are outside of the home. A large percentage of energy consumption in the built environment directly or indirectly services humans; thus, there is a significant amount of untapped energy savings that can be achieved by involving humans in the optimization process. By including occupants in the building co-optimization process, we can gain a better understanding of individual energy responsibility and significantly improve energy consumption, thermal comfort and air quality over non human-in-the-loop systems and strategies. First, we present ePrints, a scalable energy footprinting system capable of providing personalized energy footprints in real-time. ePrints supports different apportionment policies, with microsecond-level footprint computation time and graceful scaling with the size of the building, frequency of energy updates, and rate of occupant location changes. Finally, we present applications enabled by our system, such as mobile and wearable applications to provide users timely feedback on the energy impacts of their actions, as well as applications to provide energy saving suggestions and inform building-level policies. Next, we extend the idea of energy footprinting to the city-scale with CityEnergy a city-scale energy footprinting system that utilizes the city's digital twin to provide real-time energy footprints with a focus on 100% coverage. CityEnergy takes advantage of existing sensing infrastructure and data sources in urban cities to provide energy and population estimates at the building level, even in built environments that do not have existing or accessible energy or population data. CityEnergy takes advantage of LFTSys, a low frame-rate vehicle tracking and traffic flow system that we implement on New York City's traffic camera network, to aid in building population estimates. Evaluations comparing CityEnergy with building level energy footprints and city-wide data demonstrate the potential for CityEnergy to provide personal energy footprint estimates at the city-scale. We then tackle the challenge of involving humans in the building energy optimization process by developing recEnergy, a recommender system for reducing energy consumption in commercial buildings with human-in-the-loop. recEnergy learns actions with high energy saving potential through deep reinforcement learning, actively distribute recommendations to occupants in a commercial building, and utilize feedback from the occupants to better learn four different types of energy saving recommendations. Over a four week user study, recEnergy improves building energy reduction from a baseline saving (passive-only strategy) of 19% to 26%. Finally, we extend the recommender system to co-optimize over energy consumption, occupant thermal comfort, and air quality. The recommender system utilizes a multi-task deep reinforcement learning architecture, and is trained using a simulation environment. The simulation environment is built using different models trained on data captured from a digital twin of a real deployment. To measure occupant thermal comfort, the digital twin utilizes a real-time comfort estimation system that extracts and integrates facial temperature features with environmental sensing to provide personalized comfort estimates. We studied three different use cases in this deployment by varying the objective weights in the recommender system, and found that the system has the potential to further reduce energy consumption by 8% in energy focused optimization, improve all objectives by 5-10% in joint optimization, and improve thermal comfort by up to 21% in comfort and air quality focused optimization by incorporating move recommendations.
7

Retrofitting to lower energy consumption: comparing two commercial buildings in Sandton, Johannesburg

Thovhakale, Takalani Bridget 20 August 2012 (has links)
M.Sc. / This study compares the electricity consumption of two buildings, of similar architectural design, in Simba Office Park, Sandton, in Johannesburg. One of the buildings (Block AB) has not been retrofitted for energy efficiency, whilst the other building (Block C) is a retrofitted building. The hypothesis postulates that the retrofitted building would use less energy than the non-retrofitted one. The research methodology employed has been used internationally, as in the case reported by Levine et al. (1996), who did a study in the United States of America on retrofitting for achieving energy efficiency. Dong et al. (2005) investigated the energy savings due to the retrofitting of old Singaporean commercial office buildings. In this case, six buildings were compared before and after retrofitting, using utility bill and weather data. There have also been similar studies in China (Xu et al, 2006) and Budapest (Urge-Vorsatz & Novikova, 2008). The Budapest study also unpacked the cost of retrofitting. Using methods advocated by Probst (2004), Yalcintas (2008) and Yalcintas & Kaya (2009) for collecting data on floor space, building parameters and design, this study also collected electricity consumption data based on meter readings for the same blocks over the period March 2009 to April 2010. The retrofitting measures were documented and the associated costs noted. Interviews were conducted with key personnel such as the Central Energy Fund (CEF) House executives, the site electrical engineer, the developer, and Simba Office Park managers. Block AB had the least number of energy-efficient installations. Block C was found to be fully retrofitted, at a cost of more than R4 million. However, the energy management system, required to manage and monitor energy use, was only fully installed by November 2009. The results of this study are significant. It was found that energy consumption for Block C far exceeded that for Block AB. Thus, in this case, retrofitting did not reduce electricity consumption. The results demonstrate that in order to fully understand energy use, data collection and analysis must be ongoing. This verifies the findings of Ali (2008), Armstrong (2009) and Yalcintas & Kaya (2009) who found that we need to shift from managing buildings to managing energy use and assess and verify any recorded savings to ensure energy conservation. Computer-based building management systems play a major role in such management. Such a system was only partially in use in Block C for the duration of the study period. Thus, another finding was that the energy management system needs to be fully operational in real time, or else energy efficiencies cannot be achieved and data sets will be incomplete. This conclusion reflects the findings of Hirst (1980).
8

Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

Antonopoulos, Chrissi Argyro 26 November 2013 (has links)
This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed for this analysis indicates that this method of market prediction may be used to adequately capture cumulative construction metrics for a whole-building analysis as opposed to individual energy efficiency measures used in green building.

Page generated in 0.1353 seconds