Spelling suggestions: "subject:"common data model"" "subject:"common data godel""
1 |
An approach to open virtual commissioning for component-based automationKong, Xiangjun January 2013 (has links)
Increasing market demands for highly customised products with shorter time-to-market and at lower prices are forcing manufacturing systems to be built and operated in a more efficient ways. In order to overcome some of the limitations in traditional methods of automation system engineering, this thesis focuses on the creation of a new approach to Virtual Commissioning (VC). In current VC approaches, virtual models are driven by pre-programmed PLC control software. These approaches are still time-consuming and heavily control expertise-reliant as the required programming and debugging activities are mainly performed by control engineers. Another current limitation is that virtual models validated during VC are difficult to reuse due to a lack of tool-independent data models. Therefore, in order to maximise the potential of VC, there is a need for new VC approaches and tools to address these limitations. The main contributions of this research are: (1) to develop a new approach and the related engineering tool functionality for directly deploying PLC control software based on component-based VC models and reusable components; and (2) to build tool-independent common data models for describing component-based virtual automation systems in order to enable data reusability.
|
2 |
CAD feature development and abstraction for process planningSivakumar, Krish January 1994 (has links)
No description available.
|
3 |
An Extract-Transform-Load Process Design for the Incremental Loading of German Real-World Data Based on FHIR and OMOP CDM: Algorithm Development and ValidationHenke, Elisa, Peng, Yuan, Reinecke, Ines, Zoch, Michéle, Sedlmayr, Martin, Bathelt, Franziska 24 January 2025 (has links)
Background: In the Medical Informatics in Research and Care in University Medicine (MIRACUM) consortium, an IT-based clinical trial recruitment support system was developed based on the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). Currently, OMOP CDM is populated with German Fast Healthcare Interoperability Resources (FHIR) using an Extract-Transform-Load (ETL) process, which was designed as a bulk load. However, the computational effort that comes with an everyday full load is not efficient for daily recruitment.
Objective: The aim of this study is to extend our existing ETL process with the option of incremental loading to efficiently support daily updated data.
Methods: Based on our existing bulk ETL process, we performed an analysis to determine the requirements of incremental loading. Furthermore, a literature review was conducted to identify adaptable approaches. Based on this, we implemented three methods to integrate incremental loading into our ETL process. Lastly, a test suite was defined to evaluate the incremental loading for data correctness and performance compared to bulk loading.
Results: The resulting ETL process supports bulk and incremental loading. Performance tests show that the incremental load took 87.5% less execution time than the bulk load (2.12 min compared to 17.07 min) related to changes of 1 day, while no data differences occurred in OMOP CDM.
Conclusions: Since incremental loading is more efficient than a daily bulk load and both loading options result in the same amount of data, we recommend using bulk load for an initial load and switching to incremental load for daily updates. The resulting incremental ETL logic can be applied internationally since it is not restricted to German FHIR profiles.
|
Page generated in 0.0472 seconds