• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EX VIVO EXPANSION OF TUMOR-SPECIFIC T CELLS WITH SEQUENTIAL COMMON GAMMA CHAIN CYTOKINES RENDER THEM REFRACTORY TO MDSC UPON ADOPTIVE IMMUNOTHERAPY.

Basu, Debasmita 18 June 2010 (has links)
Myeloid derived suppressor cells (MDSCs) are heterogeneous population of immature cells at various stages of differentiation, characterized by the presence of CD11b and Gr1 in mice. They are major contributors of the tumor-induced immune suppression against the tumors. So far, various strategies have been introduced to overcome the endogenous MDSCs. Most of these approaches rely on the elimination of MDSCs and it is not clear whether tumor-reactive T cells may be differentiated towards phenotypes that are refractory to MDSCc. Our laboratory has previously shown that high affinity T cells derived from tumor-sensitized wild-type FVB mice and expanded ex vivo with the alternating common gamma chain cytokine formulation (initiation of culture with IL-7 + IL-15 followed by one day pulse with IL-2 and continuation of culture with IL-7 + IL-15) can successfully induce tumor regression in FVBN202 transgenic mouse model of breast carcinoma upon adoptive immunotherapy (AIT), only when combined with the depletion of endogenous MDSCs. In this study we have introduced a novel formulation of the sequential common gamma chain cytokines (initiation of culture with IL-7 + IL-15 followed by the expansion with IL-2 until 6 days) for the ex vivo expansion of the autologous and tumor-sensitized low affinity T cells derived from FVBN202 mice and further used for AIT. This novel formulation induced differentiation of tumor-reactive CD8+ T cells mainly towards effector and effector/memory phenotypes that were refractory to MDSCs in vitro and in vivo. AIT by using these T cells induced rejection of primary neu positive tumors and generated long-term memory responses against the recall tumor challenge. Importantly, these T cells also resulted in the inhibition of neu antigen negative relapsed tumor cells. Our findings in the present study provide a platform for AIT of breast cancer patients. .
2

Rôle de l'épithélium et de l'endothélium rénal au cours des glomérulopathies expérimentales. Etude des glomérulonéphrites inflammatoires et des glomérulopathies toxique et hypertensive / Role of renal epithelium and endothelium in experimental glomerular diseases

Luque Rincon, Yosu 26 October 2016 (has links)
Les maladies glomérulaires sont une des principales causes d'insuffisance rénale terminale de nos jours et constituent un problème de santé publique. Le concept classique dans les glomérulopathies accorde à l'agression systémique immune, toxique ou hypertensive le rôle principal dans la formation des lésions glomérulaires. L'hypothèse développée dans ce manuscrit est que épithélium et endothélium, deux composants principaux du parenchyme rénal sont des acteurs majeurs dans la formation des lésions glomérulaires. Trois modèles expérimentaux de glomérulopathie (inflammatoire, toxique et hypertensive) chez la souris nous ont permis d'étudier une voie de signalisation épithéliale γC/JAK/STAT classiquement décrite dans les cellules immunitaires et le système de réponse à l'hypoxie endothéliale afin d'étayer cette hypothèse. Après avoir discuté le rôle principal classiquement attribué aux lymphocytes T dans le modèle anti-membrane basale glomérulaire, un modèle animal de glomérulonéphrite inflammatoire, nous avons démontré le rôle protecteur de la chaîne γ commune (γC) glomérulaire et de sa protéine d'aval STAT5 dans le podocyte au cours du modèle anti-MBG et de la néphropathie à l'adriamycine. Enfin, nous avons étudié le rôle protecteur de EPAS1 (HIF-2α), une sous-unité régulatrice du complexe HIF, dans l'endothélium au cours des lésions glomérulaires hypertensives. Au total, ce travail met en évidence le rôle majeur de l'épithélium et l'endothélium rénal, étroitement liés, dans la formation des lésions glomérulaires. Le parenchyme rénal représente un acteur à part entière dans la physiopathologie de ces lésions comme le montrent les travaux sur les systèmes γC/STAT5 et HIF. / Glomerular diseases are a leading cause of kidney failure and represent a public health problem. Classically, systemic effectors such as the immune system, drug toxicity or hypertension are thought to be the main drivers of glomerular diseases. The hypothesis developed in this manuscript is that epithelium and endothelium, the two main components of the renal parenchyma, are major players in the formation of glomerular lesions. Three experimental models of glomerular disease (inflammatory, toxic and hypertensive) in mice allowed us to study epithelial γC / JAK / STAT signaling classically described in immune cells and the endothelial hypoxia inducible system in order to support this hypothesis. After discussing the main role traditionally assigned to T cells in the anti- glomerular basement membrane model, an animal model of inflammatory glomerulonephritis, we demonstrated the protective role of the glomerular interleukin common γ chain (γC) receptor and its dependent podocyte-specific STAT5 during the anti-GBM model and adriamycin nephropathy. We then showed the protective role of endothelial EPAS1 (HIF-2α), a regulatory subunit of HIF complex in focal segmental glomerulosclerosis (FSGS) induced by angiotensin II. In total, this work highlights the important role of the closely linked renal epithelium and endothelium in the formation of glomerular lesions using three experimental models of glomerular diseases. The renal parenchyma is a full player in the pathophysiology of these lesions as shown by the works studying γC / JAK / STAT and HIF systems.
3

Regulation of Fas-deficient Lymphoproliferative Double Negative T Cells by Interferon Gamma and the Fc Receptor Gamma Chain

Juvet, Stephen 20 March 2013 (has links)
The Fas pathway is critical for the maintenance of normal T cell homeostasis. Humans and mice with defects in this pathway exhibit the accumulation of large numbers of peripheral lymphocytes and lupus-like autoimmunity. A major feature of these organisms is the accumulation of non-NK TCRαβ+CD4-CD8- “double negative” (DN) T cells. While regulatory T cells (Tregs) with the DN phenotype have been extensively characterized in Fas-sufficient mice and humans, limited data exist on the role of DN T cells as Tregs in Fas-deficient animals. In fact, most of the literature suggests that the DN T cells accumulating in Fas-deficiency states are pathogenic, contributing to secondary lymph node enlargement and autoimmune disease. In this body of work, data are presented that illustrate that Fas-deficient lymphoproliferative (LPR) DN T cells can act as Tregs in an interferon γ (IFNγ)- and Fas ligand (FasL)-dependent fashion toward Fas-sufficient T cells. LPR DN T cells needed to be able to secrete and respond to IFNγ in order to upregulate surface FasL, in order to ameliorate GVHD mediated by CD4+ T cells in vivo and to suppress the proliferation of and kill activated CD4+ T cells in vitro. FcRγ, a key molecule involved in innate immune responses, can substitute for CD3ζ in the T cell receptor (TCR) of mouse and human T cells in certain circumstances; in doing so, it is essential for the regulatory function of TCR transgenic DN Tregs. FcRγ-deficient LPR mice were found to have exacerbated T cell accumulation and early mortality. We show that while FcRγ expression was required for LPR DN T cells to regulate CD4+ and CD8+ T cells responding to alloantigens in vitro and in vivo, it does not control autologous lymphoproliferation in LPR mice by supporting the function of a regulatory cell, nor does it affect the rate of proliferation of LPR T cells in vivo. Instead, FcRγ-expressing LPR CD4+, CD8+ and DN T cells were found to be undergoing apoptosis at a high rate in vivo, and in contrast to their FcRγ-deficient counterparts, FcRγ+ LPR DN T cells were capable of undergoing TCR restimulation-induced cell death (RICD). The data presented in this thesis therefore show that LPR DN T cells can exhibit IFNγ-, FasL- and FcRγ-dependent regulatory function, and also illustrate a previously unknown function for FcRγ in controlling the expansion of Fas-deficient T cells. The implications of these data for autoimmune lymphoproliferative syndromes, and normal T cell homeostasis, are discussed.
4

Regulation of Fas-deficient Lymphoproliferative Double Negative T Cells by Interferon Gamma and the Fc Receptor Gamma Chain

Juvet, Stephen 20 March 2013 (has links)
The Fas pathway is critical for the maintenance of normal T cell homeostasis. Humans and mice with defects in this pathway exhibit the accumulation of large numbers of peripheral lymphocytes and lupus-like autoimmunity. A major feature of these organisms is the accumulation of non-NK TCRαβ+CD4-CD8- “double negative” (DN) T cells. While regulatory T cells (Tregs) with the DN phenotype have been extensively characterized in Fas-sufficient mice and humans, limited data exist on the role of DN T cells as Tregs in Fas-deficient animals. In fact, most of the literature suggests that the DN T cells accumulating in Fas-deficiency states are pathogenic, contributing to secondary lymph node enlargement and autoimmune disease. In this body of work, data are presented that illustrate that Fas-deficient lymphoproliferative (LPR) DN T cells can act as Tregs in an interferon γ (IFNγ)- and Fas ligand (FasL)-dependent fashion toward Fas-sufficient T cells. LPR DN T cells needed to be able to secrete and respond to IFNγ in order to upregulate surface FasL, in order to ameliorate GVHD mediated by CD4+ T cells in vivo and to suppress the proliferation of and kill activated CD4+ T cells in vitro. FcRγ, a key molecule involved in innate immune responses, can substitute for CD3ζ in the T cell receptor (TCR) of mouse and human T cells in certain circumstances; in doing so, it is essential for the regulatory function of TCR transgenic DN Tregs. FcRγ-deficient LPR mice were found to have exacerbated T cell accumulation and early mortality. We show that while FcRγ expression was required for LPR DN T cells to regulate CD4+ and CD8+ T cells responding to alloantigens in vitro and in vivo, it does not control autologous lymphoproliferation in LPR mice by supporting the function of a regulatory cell, nor does it affect the rate of proliferation of LPR T cells in vivo. Instead, FcRγ-expressing LPR CD4+, CD8+ and DN T cells were found to be undergoing apoptosis at a high rate in vivo, and in contrast to their FcRγ-deficient counterparts, FcRγ+ LPR DN T cells were capable of undergoing TCR restimulation-induced cell death (RICD). The data presented in this thesis therefore show that LPR DN T cells can exhibit IFNγ-, FasL- and FcRγ-dependent regulatory function, and also illustrate a previously unknown function for FcRγ in controlling the expansion of Fas-deficient T cells. The implications of these data for autoimmune lymphoproliferative syndromes, and normal T cell homeostasis, are discussed.
5

Ex vivo reprogramming of tumor-reactive immune cells from FVBN202 mice bearing lung metastatic mammary carcinoma: an immunotherapeutic opportunity revealed against recurrence

Hall, Charles 23 July 2013 (has links)
Metastatic breast cancer treatment has seen few advances in recent years, yet treatment resistance continues to rise, causing disease recurrence. A pilot study was performed to determine the efficacy of ex vivo expansion and reprogramming of tumor-reactive immune cells from experimental metastatic tumor-sensitized mice. Also, phenotypic changes in tumors due to metastasis or tumor microenvironment influences were characterized. Metastatic neu+ mouse mammary carcinoma (mMMC) and its distant relapsing neu-antigen-negative variant (mANV) were investigated in FVBN202 mice. Tumor-reactive central memory CD8+ T cells and activated NK/NKT cells were successfully reprogrammed and expanded during 6-day expansion from mMMC- and/or mANV-sensitized mice, resulting in tumor-specific cytotoxicity. mMMC exhibited a flexible neu-expression pattern and acquired stem-like, tumorigenic phenotype following metastasis while mANV remained stable except decreased tumorigenicity. Myeloid-derived suppressor cell (MDSC) levels were not increased. Adoptive cellular therapy (ACT) with reprogrammed tumor-reactive immune cells may prove effective prophylaxis against metastatic or recurrent breast cancer.

Page generated in 0.0397 seconds