Spelling suggestions: "subject:"communautés een ligne"" "subject:"communautés enn ligne""
1 |
La patrimonialisation des jeux vidéo et de l'informatique. : Ethnographie en ligne et hors ligne d'une communauté de passionnés / Making video games and microcomputer a cultural heritage : Online and offline ethnography of a hobbyist communityClais, Jean-Baptiste 14 October 2011 (has links)
Notre objet est une communauté de 300 à 400 passionnés-collectionneurs de vieux ordinateurs et de vieux jeux vidéo des années 1970-90, autrement appelés « vieilles machines », dispersés dans toute la France ainsi qu’en Belgique et en Suisse. Cette communauté est organisée en premier lieu par des forums sur internet bien qu’émanant d’associations locales. Ces forums servent à l’échange d’informations et de matériel de collection entre passionnés. Un système de valeur riche et complexe organise les relations sociales autours de l’amour et de l’utilisation des vieilles machines, d’une volonté de partage du savoir et du rejet de la spéculation. Le partage est au cœur de l’imaginaire et des pratiques de cette communauté. Il n’est pourtant pas la règle dans les économies qui l’entourent (eBay, brocantes, sites d’enchères divers). Or à l’époque des fondateurs de la communauté vers 1998, les passionnés pouvaient alors s’approvisionner gratuitement ou presque. Ils ont donc ressenti la mise en place d’un marché extérieur comme une forme d’expropriation. Ils ont donc réorganisé les règles de vie et d’échange au sein de la communauté pour contrecarrer la hausse des prix interne que générait la hausse sur le marché extérieur. Ils ont à la fois promu la notion d’échange mutuellement profitable contre l’idée de profit, organisé un système de tabou sur les prix réel des objets, tirant parti du statut de prescripteurs. Ils ont ainsi réussi à créer une niche économique, un marché à bas prix, à l’accès fermement contrôlé mais au sein duquel, une fois intégré, après avoir construit une situation par une « carrière » chacun peut profiter d’un système d’entraide généralisée. / This work is about a community of 300 to 400 hobbyist-collectors of micro-computers and video-games from the 70’s to the 90’s which they call “vieilles machines”. They are scattered all over France, Belgium and Switzerland. This community communicates through online forums although they belong to local offline associations. These forums are mainly used to exchange objects and information among collectors. A rich and complex system of value and representations organizes the social relationships. The main points are: the love of the “vieilles machines”, the will to use them, sharing knowledge and rejection of speculation. Sharing is the very basis of the social imaginary of the community. Sharing isn’t however the rule in neighboring economic systems (eBay, garage sales other online auction websites). Yet, during the first time of the community around 1998, when these objects were only obsolescent technical rubbishes, the community members could collect for free or very few money. Thus they felt as if they have been stolen when an outside market developed and prices increased. As a reaction, they changed social norms and exchange rules inside the community in order to temper the internal increase of the prices caused by outside market’s increase. They both promoted the idea of mutually satisfactory exchange and organized a taboo on the object’s real price using the position of major online opinion leaders on their subjects. They managed to create a niche economy, a low price market in which one cannot integrate easily but in which when fully integrated, after building one’s position through a “career” one can beneficiate from an extend system of generosity and mutual aid.
|
2 |
Recommandation Pair-à-Pair pour Communautés en Ligne à Grande EchelleDraidi, Fady 09 March 2012 (has links) (PDF)
Les systèmes de recommandation (RS) et le pair-à-pair (P2) sont complémen-taires pour faciliter le partage de données à grande échelle: RS pour filtrer et person-naliser les requêtes des utilisateurs, et P2P pour construire des systèmes de partage de données décentralisés à grande échelle. Cependant, il reste beaucoup de difficultés pour construire des RS efficaces dans une infrastructure P2P. Dans cette thèse, nous considérons des communautés en ligne à grande échelle, où les utilisateurs notent les contenus qu'ils explorent et gardent dans leur espace de travail local les contenus de qualité pour leurs sujets d'intérêt. Notre objectif est de construire un P2P-RS efficace pour ce contexte. Nous exploitons les sujets d'intérêt des utilisateurs (extraits automatiquement des contenus et de leurs notes) et les don-nées sociales (amitié et confiance) afin de construire et maintenir un overlay P2P so-cial. La thèse traite de plusieurs problèmes. D'abord, nous nous concentrons sur la conception d'un P2P-RS qui passe à l'échelle, appelé P2Prec, en combinant les ap-proches de recommandation par filtrage collaboratif et par filtrage basé sur le contenu. Nous proposons alors de construire et maintenir un overlay P2P dynamique grâce à des protocoles de gossip. Nos résultats d'expérimentation montrent que P2Prec per-met d'obtenir un bon rappel avec une charge de requêtes et un trafic réseau accep-tables. Ensuite, nous considérons une infrastructure plus complexe afin de construire et maintenir un overlay P2P social, appelé F2Frec, qui exploite les relations sociales entre utilisateurs. Dans cette infrastructure, nous combinons les aspects filtrage par contenu et filtrage basé social, pour obtenir un P2P-RS qui fournit des résultats de qualité et fiables. A l'aide d'une évaluation de performances extensive, nous mon-trons que F2Frec améliore bien le rappel, ainsi que la confiance dans les résultats avec une surcharge acceptable. Enfin, nous décrivons notre prototype de P2P-RS que nous avons implémenté pour valider notre proposition basée sur P2Prec et F2Frec.
|
3 |
Recommandation Pair-à-Pair pour Communautés en Ligne à Grande Echelle / Peer-to-Peer Recommendation for Large-scale Online CommunitiesDraidi, Fady 09 March 2012 (has links)
Les systèmes de recommandation (RS) et le pair-à-pair (P2) sont complémentaires pour faciliter le partage de données à grande échelle: RS pour filtrer et personnaliser les requêtes des utilisateurs, et P2P pour construire des systèmes de partage de données décentralisés à grande échelle. Cependant, il reste beaucoup de difficultés pour construire des RS efficaces dans une infrastructure P2P. Dans cette thèse, nous considérons des communautés en ligne à grande échelle, où les utilisateurs notent les contenus qu'ils explorent et gardent dans leur espace de travail local les contenus de qualité pour leurs sujets d'intérêt. Notre objectif est de construire un P2P-RS efficace pour ce contexte. Nous exploitons les sujets d'intérêt des utilisateurs (extraits automatiquement des contenus et de leurs notes) et les données sociales (amitié et confiance) afin de construire et maintenir un overlay P2P social. La thèse traite de plusieurs problèmes. D'abord, nous nous concentrons sur la conception d'un P2P-RS qui passe à l'échelle, appelé P2Prec, en combinant les approches de recommandation par filtrage collaboratif et par filtrage basé sur le contenu. Nous proposons alors de construire et maintenir un overlay P2P dynamique grâce à des protocoles de gossip. Nos résultats d'expérimentation montrent que P2Prec permet d'obtenir un bon rappel avec une charge de requêtes et un trafic réseau acceptables. Ensuite, nous considérons une infrastructure plus complexe afin de construire et maintenir un overlay P2P social, appelé F2Frec, qui exploite les relations sociales entre utilisateurs. Dans cette infrastructure, nous combinons les aspects filtrage par contenu et filtrage basé social, pour obtenir un P2P-RS qui fournit des résultats de qualité et fiables. A l'aide d'une évaluation de performances extensive, nous montrons que F2Frec améliore bien le rappel, ainsi que la confiance dans les résultats avec une surcharge acceptable. Enfin, nus décrivons notre prototype de P2P-RS que nous avons implémenté pour valider notre proposition basée sur P2Prec et F2Frec. / Recommendation systems (RS) and P2P are both complementary in easing large-scale data sharing: RS to filter and personalize users' demands, and P2P to build decentralized large-scale data sharing systems. However, many challenges need to be overcome when building scalable, reliable and efficient RS atop P2P. In this work, we focus on large-scale communities, where users rate the contents they explore, and store in their local workspace high quality content related to their topics of interest. Our goal then is to provide a novel and efficient P2P-RS for this context. We exploit users' topics of interest (automatically extracted from users' contents and ratings) and social data (friendship and trust) as parameters to construct and maintain a social P2P overlay, and generate recommendations. The thesis addresses several related issues. First, we focus on the design of a scalable P2P-RS, called P2Prec, by leveraging collaborative- and content-based filtering recommendation approaches. We then propose the construction and maintenance of a P2P dynamic overlay using different gossip protocols. Our performance experimentation results show that P2Prec has the ability to get good recall with acceptable query processing load and network traffic. Second, we consider a more complex infrastructure in order to build and maintain a social P2P overlay, called F2Frec, which exploits social relationships between users. In this new infrastructure, we leverage content- and social-based filtering, in order to get a scalable P2P-RS that yields high quality and reliable recommendation results. Based on our extensive performance evaluation, we show that F2Frec increases recall, and the trust and confidence of the results with acceptable overhead. Finally, we describe our prototype of P2P-RS, which we developed to validate our proposal based on P2Prec and F2Frec.
|
Page generated in 0.053 seconds