Spelling suggestions: "subject:"communmunication engineering"" "subject:"communmunication ingineering""
31 |
A critical ethnographic study of report writing as a literacy practice by automotive engineers /Harran, Marcelle. January 2006 (has links)
Thesis (Ph.D. (Education)) - Rhodes University, 2007.
|
32 |
Adaptive Joint Source/Channel Rate Allocation Policies For Delay Sensitive Applications Over Fading ChannelsThejaswi, Chandrashekhara P S 10 1900 (has links) (PDF)
No description available.
|
33 |
The Combined Effect Of Reduced Feedback, Frequency-Domain Scheduling, And Multiple Antenna Techniques On The Performance Of LTEDonthi, Sushruth N 04 1900 (has links) (PDF)
Frequency-domain scheduling, multiple antenna techniques, and rate adaptation enable next generation orthogonal frequency division multiple access (OFDMA) cellular systems such as Long Term Evolution (LTE) to achieve significantly higher downlink spectral efficiencies. However, this comes at the expense of increased feedback overhead on the uplink. LTE uses a pragmatic combination of several techniques to reduce the channel state feedback required by a frequency-domain scheduler.
In subband-level feedback scheme specified in LTE, the user reduces feedback by only reporting the channel quality indicator (CQI) computed over groups of resource blocks called subbands. LTE also specifies an alternate user selected subband feedback scheme, in which the feedback overhead is reduced even further by making each user feed back the indices of the best M subbands and only one CQI value averaged over all the M subbands. The coarse frequency granularity of the feedback in the above schemes leads to an occasional incorrect determination of rate by the scheduler for some resource blocks. The overall throughput of LTE depends on the method used to generate the CQI and the statistics of the channel, which depends on the multiple antenna technique used.
In this thesis, we develop closed-form expressions for the throughput achieved by the user selected and subband-level CQI feedback schemes of LTE. The comprehensive analysis quantifies the joint effects of four critical components on the overall system throughput, namely, scheduler, multiple antenna mode, CQI feedback scheme, and CQI generation method. The performance of a wide range of schedulers, namely, round robin, greedy, and proportional fair schedulers and several multiple antenna diversity modes such as receive antenna diversity and open-and closed-loop transmit diversity is analyzed. The analysis clearly brings out the dependence of the overall system throughput on important parameters such as number of resource blocks per subband and the rate adaptation thresholds. The effect of the coarse subband-level frequency granularity of feedback is explicitly captured. The analysis provides an independent theoretical reference and a quick system parameter optimization tool to an LTE system designer. It also helps us theoretically understand the behavior of OFDMA feedback reduction techniques when operated under practical system constraints.
Another contribution of this thesis is a new statistical model for the effective exponential SNR mapping (EESM), which is a highly non-linear mapping that is widely used in the design, analysis, and simulation of OFDMA systems. The statistical model is shown to be both accurate and analytically tractable, and plays a crucial role in facilitating the analysis of the throughput of LTE when EESM is used to generate the CQI.
|
34 |
Delay Minimization of an M/M/1 Point-to-Point Link Model Subject to Throughput and Power ConstraintsRahul, R January 2014 (has links) (PDF)
In this thesis, we address the problem of minimizing the average delay of data pack-ets served by a transmitter on a static, point-to-point link. The transmitter dynamically chooses state-dependent admission and transmission rates, while adhering to average throughput and transmission power constraints. The transmitter is modelled as an infinite buffer Markov queue with adjustable arrival and service rates. Data packets arrive at the system according to a Poisson process with rate, Λ, and are admitted at a rate, λnwith 0≤ λn ≤ Λ, depending on the number, n, of data packets present in the system. The packet size is assumed to be exponentially distributed, and the controller chooses a transmission rate, µn, at most equal to a maximum value, M, depending on the current backlog, n, in the system. The objective is to minimize the average delay of data packets in the system subject to a throughput lower bound constraint, while satisfying an upper bound on the average transmission power. This constrained MDP problem is solved using a Lagrange relaxation approach and analysed for the cases with throughput and power constraints that are achievable with equality by appropri-ate values of the Lagrange multipliers. A procedure is developed, based on explicit formulae, using which optimal admission and service rates as a function of the packet queue length are obtained.
|
35 |
On Some Aspects Of Uncertainty Inequality Using Samples Of Bandlimited SignalsSagar, G Vidya 07 1900 (has links) (PDF)
No description available.
|
36 |
Design And Development Of Modular System For QoS Guarantee In Wireless NetworksChetan Kumar, S 11 1900 (has links) (PDF)
No description available.
|
37 |
Analysis And Simulation Of Photonic Crystal Components For Optical CommunicationsDinseh Kumar, V 10 1900 (has links) (PDF)
No description available.
|
38 |
Performance Analysis Of Multicarrier DS-CDMA SystemsShankar Kumar, K R 04 1900 (has links) (PDF)
No description available.
|
39 |
Time-Varying Signal Models : Envelope And Frequency Estimation With Application To Speech And Music Signal CompressionChandra Sekhar, S January 2005 (has links) (PDF)
No description available.
|
40 |
Measurement Based Optimal Source Shaping In Integrated Services Packet NetworksDube, Parijat 10 1900 (has links) (PDF)
No description available.
|
Page generated in 0.4937 seconds