• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • Tagged with
  • 17
  • 17
  • 17
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy efficient coordinate establishment in wireless sensor networks

Erasmus, Daniel Jacobus Elardus. January 2005 (has links)
Thesis (M.Eng.)(Computer Engineering)-University of Pretoria, 2005. / Title from opening screen (viewed March 22, 2006). Includes summaries in English and Afrikaans. Includes bibliographical references.
2

Joint bandwidth and power allocation in wireless communication networks

Gong, Xiaowen 11 1900 (has links)
This thesis consists of two studies on joint bandwidth and power allocation strategy for wireless communication networks. In the first study, joint bandwidth and power allocation strategy is proposed for wireless multi-user networks without relaying and with decode-and-forward relaying. It is shown that the formulated resource allocation problems are convex and, thus, can be solved efficiently. Admission control problem based on the joint bandwidth and power allocation strategy is further considered, and a greedy search algorithm is developed for solving it efficiently. In the second study, joint bandwidth and power allocation strategy is presented for maximizing the sum ergodic capacity of secondary users under fading channels in cognitive radio networks. Optimal bandwidth allocation is derived in closed-form for any given power allocation. Then the structures of optimal power allocations are derived. Using these structures, efficient algorithms are developed for finding the optimal power allocations. / Communications
3

Joint bandwidth and power allocation in wireless communication networks

Gong, Xiaowen Unknown Date
No description available.
4

Design of direct digital frequency synthesizer for wireless applications

Chimakurthy, Lakshmi Sri Jyothi. Dai, Foster. January 2005 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references.
5

Node placement, routing and localization algorithms for heterogeneous wireless sensor networks

Dong, Shaoqiang, Agrawal, Prathima, January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 58-62).
6

Discrete Event Simulation of Mobility and Spatio-Temporal Spectrum Demand

Chandan, Shridhar 05 February 2014 (has links)
Realistic mobility and cellular traffic modeling is key to various wireless networking applications and have a significant impact on network performance. Planning and design, network resource allocation and performance evaluation in cellular networks require realistic traffic modeling. We propose a Discrete Event Simulation framework, Diamond - (Discrete Event Simulation of Mobility and Spatio-Temporal Spectrum Demand) to model and analyze realistic activity based mobility and spectrum demand patterns. The framework can be used for spatio-temporal estimation of load, in deciding location of a new base station, contingency planning, and estimating the resilience of the existing infrastructure. The novelty of this framework lies in its ability to capture a variety of complex, realistic and dynamically changing events effectively. Our initial results show that the framework can be instrumental in contingency planning and dynamic spectrum allocation. / Master of Science
7

Design And Development Of Modular System For QoS Guarantee In Wireless Networks

Chetan Kumar, S 11 1900 (has links) (PDF)
No description available.
8

Optimal Network Coding Under Some Less-Restrictive Network Models

Chih-Hua Chang (10214267) 12 March 2021 (has links)
Network Coding is a critical technique when designing next-generation network systems, since the use of network coding can significantly improve the throughput and performance (delay/reliability) of the system. In the traditional design paradigm without network coding, different information flows are transported in a similar way like commodity flows such that the flows are kept separated while being forwarded in the network. However, network coding allows nodes in the network to not only forward the packet but also process the incoming information messages with the goal of either improving the throughput, reducing delay, or increasing the reliability. Specifically, network coding is a critical tool when designing absolute Shannon-capacity-achieving schemes for various broadcasting and multi-casting applications. In this thesis, we study the optimal network schemes for some applications with less restrictive network models. A common component of the models/approaches is how to use network coding to take advantage of a broadcast communication channel.<div><br></div><div>In the first part of the thesis, we consider the system of one server transmitting K information flows, one for each of K users (destinations), through a broadcast packet erasure channels with ACK/NACK. The capacity region of 1-to-K broadcast packet erasure channels with ACK/NACK is known for some scenarios, e.g., K<=3, etc. However, existing achievability schemes with network coding either require knowing the target rate in advance, and/or have a complicated description of the achievable rate region that is difficult to prove whether it matches the capacity or not. In this part, we propose a new network coding protocol with the following features: (i) Its achievable rate region is identical to the capacity region for all the scenarios in which the capacity is known; (ii) Its achievable rate region is much more tractable and has been used to derive new capacity rate vectors; (iii) It employs sequential encoding that naturally handles dynamic packet arrivals; (iv) It automatically adapts to unknown packet arrival rates; (v) It is based on GF(q) with q>=K. Numerically, for K=4, it admits an average control overhead 1.1% (assuming each packet has 1000 bytes), average encoding memory usage 48.5 packets, and average per-packet delay 513.6 time slots, when operating at 95% of the capacity.</div><div><br></div><div>In the second part, we focus on the coded caching system of one server and K users, each user k has cache memory size M<sub>k</sub> and demand a file among the N files currently stored at server. The coded caching system consists of two phases: Phase 1, the placement phase: Each user accesses the N files and fills its cache memory during off-peak hours; and Phase 2, the delivery phase: During the peak hours, each user submits his/her own file request and the server broadcasts a set of packet simultaneously to K users with the goal of successfully delivering the desired packets to each user. Due to the high complexity of coded caching problem with heterogeneous file size and heterogeneous cache memory size for arbitrary N and K, prior works focus on solving the optimal worst-case rate with homogeneous file size and mostly focus on designing order-optimal coded caching schemes with user-homogeneous file popularity that attain the lower bound within a constant factor. In this part, we derive the average rate capacity for microscopic 2-user/2-file (N=K=2) coded caching problem with heterogeneous files size, cache memory size, and user-dependent heterogeneous file popularity. The study will shed some further insights on the complexity and optimal scheme design of general coded caching problem with full heterogeneity.<br></div><div><br></div><div>In the third part, we further study the coded caching system of one server, K= 2 users, and N>=2 files and focus on the user-dependent file popularity of the two users. In order to approach the exactly optimal uniform average rate of the system, we simplify the file demand popularity to binary outputs, i.e., each user either has no interest (with probability 0) or positive uniform interest (with a constant probability) to each of the N file. Under this model, the file popularity of each user is characterized by his/her file demand set of positive interest in the N files. Specifically, we analyze the case of two user (K=2). We show the exact capacity results of one overlapped file of the two file demand sets for arbitrary N and two overlapped files of the two file demand sets for N = 3. To investigate the performance of large overlapped files we also present the average rate capacity under the constraint of selfish and uncoded prefetching with explicit prefetching schemes that achieve those capacities. All the results allow for arbitrary (and not necessarily identical) users' cache capacities and number of files in each file demand set.<br></div>
9

Capturing Successive Interference Cancellation in A Joint Routing and Scheduling Algorithm for Wireless Communication Networks

Rakhshan, Ali 01 January 2013 (has links) (PDF)
Interference limits the throughput of modern wireless communication networks, and thus the successful mitigation of interference can have a significant impact on network performance. Successive interference cancellation (SIC) has emerged as a promising physical layer method, where multiple packets received simultaneously need not be treated as a ``collision'' requiring retransmission; rather, under certain conditions, all of the packets can be decoded. Obviously, using SIC can thus serve as an important design element that can provide higher performance for the network. However, it also requires a rethinking of the way that traditional routing and scheduling algorithms, which are designed for a traditional physical layer, are developed. In order to consider routing and scheduling over a physical layer employing SIC, some tools such as the oft-employed conflict graph need to be modified. In particular, a notion of links interfering with other links ``indirectly'' is required, and this issue has been ignored in many past works. Therefore, considering the dependencies and interferences between links, a joint routing and scheduling algorithm that employs an understanding of the SIC that will be employed at the physical layer is presented and shown to surpass previous algorithms. We know that the maximum throughput scheduling problem is NP-hard. On the other hand, even if we can reach maximum throughput scheduling, while being throughput efficient, it can result in highly unfair rates among the users. Hence, proportional fairness is developed in the proposed algorithm.
10

Energy Harvesting for Health Monitoring Balises : Analytical study

Carreras Orobengoa, Leire January 2021 (has links)
Balises are transponders installed in railways. These devices are nowadays powered by means of a radiofrequency signal emitted by each running train that passes above them. It is only during this moment that the health state of the balises is checked. Hence, there is currently no way to check whether the balises are properly working before the train passes by them. With the aim of executing regular health checks to the balises, an additional source of energy to monitor the balises should be contemplated. Energy harvesting is observed as a suitable solution for this issue. However, a lack of suitability studies is contemplated which englobes the available energy harvesting solutions in railway environments. Therefore, this thesis presents an exploratory work that uses the health monitoring of the balises as a test case for the study of the compatibility of different energy harvesters in diverse railway environments. Hazardous and remote areas are identified as locations of interest for the implementation of the technology, as cabling in those areas is costly and health checks to balises that are not constantly active are of outmost interest. Thus, the addition of wireless communication networks is also studied, due to the need of sending the information obtained in the health checks to monitoring control units. After an initial research study is performed, requirements in railway environments are defined, and three railway scenarios are selected for a suitability study. Then, the investigated energy harvesters and wireless communication networks are compared analytically, and possible technologies for the storage of the harvested energy are presented. It is found that no energy harvester exists that suits all the environments and shows a sufficient power output to make constant checks in remote areas. Nonetheless, piezoelectric and wind harvesters are proposed, because of the commercial availability of the former and the potential of the latter. In terms of wireless communication networks, LoRaWAN shows a low power consumption, while it offers a wide communication range and global coverage. It is, therefore, proposed as the best framework for the wireless communication networks. / Baliser är transpondrar installerade i järnvägar. Dessa enheter drivs numera med hjälp av en radiofrekvenssignal som sänds ut av varje tåg som passerar ovanför baliserna. Det är först i detta ögonblick som balises hälsotillstånd kontrolleras. Därför finns det för närvarande inget sätt att kontrollera om baliserna fungerar korrekt innan tåget passerar dem. I syfte att utföra regelbundna hälsokontroller på baliserna bör en ytterligare kraftkälla för att övervaka baliserna övervägas. Energy harvesting observeras som en lämplig lösning för denna fråga. Det råder dock brist på lämplighetsstudier som förenar de tillgängliga energy harvesting lösningarna i järnvägsmiljöer. Därför presenterar denna avhandling ett undersökande arbete som använder hälsoövervakningen av baliserna som ett testfall för att studera kompatibiliteten hos olika energiskördare i olika järnvägsmiljöer. Farliga och avlägsna områden identifieras som platser av intresse för genomförandet av tekniken, eftersom kablar i dessa områden är kostsamma och hälsokontroller till baliser som inte ständigt är aktiva är av yttersta intresse. Således studeras också tillägget av trådlösa kommunikationsnätverk på grund av behovet av att skicka den information som erhållits vid hälsokontrollerna till övervakningskontrollområdena. Efter att en inledande forskningsstudie genomförts definieras krav i järnvägsmiljöer och tre järnvägsscenarier väljs ut för en lämplighetsstudie. Sedan jämförs de undersökta energiskördarna och trådlösa kommunikationsnätverk analytiskt, och eventuell teknik för lagring av den skördade energin presenteras. Det konstateras att det inte finns någon energiskördare som passar alla miljöer och visar en tillräckligt effekt för att göra konstanta kontroller i avlägsna områden. Ändå föreslås piezoelektriska och vindskördare på grund av den förstnämnda kommersiella tillgänglighet och den senare potentialen. När det gäller trådlösa kommunikationsnätverk visar LoRaWAN en låg strömförbrukning, medan det erbjuder ett brett kommunikationssortiment och global täckning. Det föreslås därför som den bästa ramen för de trådlösa kommunikationsnäten.

Page generated in 0.1542 seconds