• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Générateur de code multi-temps et optimisation de code multi-objectifs / Multi-time code generation and multi-objective code optimisation

Lomüller, Victor 12 November 2014 (has links)
La compilation est une étape indispensable dans la création d'applications performantes.Cette étape autorise l'utilisation de langages de haut niveau et indépendants de la cible tout en permettant d'obtenir de bonnes performances.Cependant, de nombreux freins empêchent les compilateurs d'optimiser au mieux les applications.Pour les compilateurs statiques, le frein majeur est la faible connaissance du contexte d'exécution, notamment sur l'architecture et les données utilisées.Cette connaissance du contexte se fait progressivement pendant le cycle de vie de l'application.Pour tenter d'utiliser au mieux les connaissances du contexte d'exécution, les compilateurs ont progressivement intégré des techniques de génération de code dynamique.Cependant ces techniques ne se focalisent que sur l'utilisation optimale du matériel et n'utilisent que très peu les données.Dans cette thèse, nous nous intéressons à l'utilisation des données dans le processus d'optimisation d'applications pour GPU Nvidia.Nous proposons une méthode utilisant différents moments pour créer des bibliothèques adaptatives capables de prendre en compte la taille des données.Ces bibliothèques peuvent alors fournir les noyaux de calcul les plus adapté au contexte.Sur l'algorithme de la GEMM, la méthode permet d'obtenir des gains pouvant atteindre 100~\% tout en évitant une explosion de la taille du code.La thèse s'intéresse également aux gains et coûts de la génération de code lors de l'exécution, et ce du point de vue de la vitesse d'exécution, de l'empreinte mémoire et de la consommation énergétique.Nous proposons et étudions 2 approches de génération de code à l'exécution permettant la spécialisation de code avec un faible surcoût.Nous montrons que ces 2 approches permettent d'obtenir des gains en vitesse et en consommation comparables, voire supérieurs, à LLVM mais avec un coût moindre. / Compilation is an essential step to create efficient applications.This step allows the use of high-level and target independent languages while maintaining good performances.However, many obstacle prevent compilers to fully optimize applications.For static compilers, the major obstacle is the poor knowledge of the execution context, particularly knowledge on the architecture and data.This knowledge is progressively known during the application life cycle.Compilers progressively integrated dynamic code generation techniques to be able to use this knowledge.However, those techniques usually focuses on improvement of hardware capabilities usage but don't take data into account.In this thesis, we investigate data usage in applications optimization process on Nvidia GPU.We present a method that uses different moments in the application life cycle to create adaptive libraries able to take into account data size.Those libraries can therefore provide more adapted kernels.With the GEMM algorithm, the method is able to provide gains up to 100~\% while avoiding code size explosion.The thesis also investigate runtime code generation gains and costs from the execution speed, memory footprint and energy consumption point of view.We present and study 2 light-weight runtime code generation approaches that can specialize code.We show that those 2 approaches can obtain comparable, and even superior, gains compared to LLVM but at a lower cost.
2

Beyond the realm of the polyhedral model : combining speculative program parallelization with polyhedral compilation / Au-delà des limites du modèle polyédrique : l'alliage de la parallélisation spéculative de programmes avec la compilation polyédrique

Sukumaran Rajam, Aravind 05 November 2015 (has links)
Dans cette thèse, nous présentons nos contributions à Apollo (Automatic speculative POLyhedral Loop Optimizer), qui est un compilateur automatique combinant la parallélisation spéculative et le modèle polyédrique, afin d’optimiser les codes à la volée. En effectuant une instrumentation partielle au cours de l’exécution, et en la soumettant à une interpolation, Apollo est capable de construire un modèle polyédrique spéculatif dynamiquement. Ce modèle spéculatif est ensuite transmis à Pluto, qui est un ordonnanceur polyédrique statique. Apollo sélectionne ensuite un des squelettes d’optimisation de code générés statiquement, et l’instancie. La partie dynamique d’Apollo surveille continuellement l’exécution du code afin de détecter de manière dé- centralisée toute violation de dépendance. Une autre contribution importante de cette thèse est notre extension du modèle polyédrique aux codes exhibant un comportement non-linéaire. Grâce au contexte dynamique et spéculatif d’Apollo, les comportements non-linéaires sont soit modélisés par des hyperplans de régression linéaire formant des tubes, soit par des intervalles de valeurs atteintes. Notre approche permet l’application de transformations polyédriques à des codes non-linéaires grâce à un système de vérification de la spéculation hybride, combinant vérifications centralisées et décentralisées. / In this thesis, we present our contributions to APOLLO (Automatic speculative POLyhedral Loop Optimizer), which is an automated compiler combining Thread Level Speculation (TLS) and the polyhedral model to optimize codes on the fly. By doing partial instrumentation at runtime, and subjecting it to interpolation, Apollo is able to construct a speculative polyhedral model dynamically. The speculative model is then passed to Pluto -a static polyhedral scheduler-. Apollo then selects one of the statically generated code optimization skeletons and instantiates it. The runtime continuously monitors the code for any dependence violation in a decentralized manner. Another important contribution of this thesis is our extension of the polyhedral model to codes exhibiting a non linear behavior. Thanks to the dynamic and speculative context offered by Apollo, non-linear behaviors are either modeled using linear regression hyperplanes forming tubes, or using ranges of reached values. Our approach enables the application of polyhedral transformations to non-linear codes thanks to an hybrid centralized-decentralized speculation verification system

Page generated in 0.1038 seconds