• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 9
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copositive programming: separation and relaxations

Dong, Hongbo 01 December 2011 (has links)
A large portion of research in science and engineering, as well as in business, concerns one similar problem: how to make things "better”? Once properly modeled (although usually a highly nontrivial task), this kind of questions can be approached via a mathematical optimization problem. Optimal solution to a mathematical optimization problem, when interpreted properly, might corresponds to new knowledge, effective methodology or good decisions in corresponding application area. As already proved in many success stories, research in mathematical optimization has a significant impact on numerous aspects of human life. Recently, it was discovered that a large amount of difficult optimization problems can be formulated as copositive programming problems. Famous examples include a large class of quadratic optimization problems as well as many classical combinatorial optimization problems. For some more general optimization problems, copositive programming provides a way to construct tight convex relaxations. Because of this generality, new knowledge of copositive programs has the potential of being uniformly applied to these cases. While it is provably difficult to design efficient algorithms for general copositive programs, we study copositive programming from two standard aspects, its relaxations and its separation problem. With regard to constructing computational tractable convex relaxations for copositive programs, we develop direct constructions of two tensor relaxation hierarchies for the completely positive cone, which is a fundamental geometric object in copositive programming. We show connection of our relaxation hierarchies with known hierarchies. Then we consider the application of these tensor relaxations to the maximum stable set problem. With regard to the separation problem for copositive programming. We first prove some new results in low dimension of 5 x 5 matrices. Then we show how a separation procedure for this low dimensional case can be extended to any symmetric matrices with a certain block structure. Last but not least, we provide another approach to the separation and relaxations for the (generalized) completely positive cone. We prove some generic results, and discuss applications to the completely positive case and another case related to box-constrained quadratic programming. Finally, we conclude the thesis with remarks on some interesting open questions in the field of copositive programming.
2

Unital dilations of completely positive semigroups

Gaebler, David 01 May 2013 (has links)
Semigroups of completely positive maps arise naturally both in noncommutative stochastic processes and in the dynamics of open quantum systems. Since its inception in the 1970's, the study of completely positive semigroups has included among its central topics the dilation of a completely positive semigroup to an endomorphism semigroup. In quantum dynamics, this amounts to embedding a given open system inside some closed system, while in noncommutative probability, it corresponds to the construction of a Markov process from its transition probabilities. In addition to the existence of dilations, one is interested in what properties of the original semigroup (unitality, various kinds of continuity) are preserved. Several authors have proved the existence of dilations, but in general, the dilation achieved has been non-unital; that is, the unit of the original algebra is embedded as a proper projection in the dilation algebra. A unique approach due to Jean-Luc Sauvageot overcomes this problem, but leaves unclear the continuity of the dilation semigroup. The major purpose of this thesis, therefore, is to further develop Sauvageot's theory in order to prove the existence of continuous unital dilations. This existence is proved in Theorem 6.4.9, the central result of the thesis. The dilation depends on a modification of free probability theory, and in particular on a combinatorial property akin to free independence. This property is implicit in some Sauvageot's original calculations, but a secondary goal of this thesis is to present it as its own object of study, which we do in chapter 3.
3

Approximately Inner Automorphisms of von Neumann Factors

Gagnon-Bischoff, Jérémie 15 March 2021 (has links)
Through von Neumann's reduction theory, the classification of injective von Neumann algebras acting on separable Hilbert spaces translates into the classification of injective factors. In his proof of the uniqueness of the injective type II₁ factor, Connes showed an alternate characterization of the approximately inner automorphisms of type II₁ factors. Moreover, he conjectured that this characterization could be extended to all types of factors acting on separable Hilbert spaces. In this thesis, we present a general toolbox containing the basic notions needed to study von Neumann algebras, before describing our work concerning Connes' conjecture in the case of type IIIλ factors. We have obtained partial results towards the proof of a modified version of this conjecture.
4

Schur-class of finitely connected planar domains: the test-function approach

Guerra Huaman, Moises Daniel 12 May 2011 (has links)
We study the structure of the set of extreme points of the compact convex set of matrix-valued holomorphic functions with positive real part on a finitely-connected planar domain 𝐑 normalized to have value equal to the identity matrix at some prescribed point t₀ ∈ 𝐑. This leads to an integral representation for such functions more general than what would be expected from the result for the scalar-valued case. After Cayley transformation, this leads to a integral Agler decomposition for the matrix Schur class over 𝐑 (holomorphic contractive matrix-valued functions over 𝐑). Application of a general theory of abstract Schur-class generated by a collection of test functions leads to a transfer-function realization for the matrix Schur-class over 𝐑, extending results known up to now only for the scalar case. We also explain how these results provide a new perspective for the dilation theory for Hilbert space operators having 𝐑 as a spectral set. / Ph. D.
5

Noncommutative Kernels

Marx, Gregory 17 July 2017 (has links)
Positive kernels and their associated reproducing kernel Hilbert spaces have played a key role in the development of complex analysis and Hilbert-space operator theory, and they have recently been extended to the setting of free noncommutative function theory. In this paper, we develop the subject further in a number of directions. We give a characterization of completely positive noncommutative kernels in the setting of Hilbert C*-modules and Hilbert W*-modules. We prove an Arveson-type extension theorem for completely positive noncommutative kernels, and we show that a uniformly bounded noncommutative kernel can be decomposed into a linear combination of completely positive noncommutative kernels. / Ph. D. / Over the last several decades, positive kernels and their associated reproducing kernel Hilbert spaces have played a key role in the development of complex analysis and Hilbert-space operator theory. Recently, they have been extended to the setting of free noncommutative function theory which is an active area of research with motivation from several different sources including free probability and noncommutative real semialgebraic geometry. In this paper, we develop further the theory of positive kernels in the noncommutative setting.
6

Geometric and Topological Phases with Applications to Quantum Computation

Ericsson, Marie January 2002 (has links)
<p>Quantum phenomena related to geometric and topological phases are investigated. The first results presented are theoretical extensions of these phases and related effects. Also experimental proposals to measure some of the described effects are outlined. Thereafter, applications of geometric and topological phases in quantum computation are discussed.</p><p>The notion of geometric phases is extended to cover mixed states undergoing unitary evolutions in interferometry. A comparison with a previously proposed definition of a mixed state geometric phase is made. In addition, an experimental test distinguishing these two phase concepts is proposed. Furthermore, an interferometry based geometric phase is introduced for systems undergoing evolutions described by completely positive maps.</p><p>The dynamics of an Aharonov-Bohm system is investigated within the adiabatic approximation. It is shown that the time-reversal symmetry for a semi-fluxon, a particle with an associated magnetic flux which carries half a flux unit, is unexpectedly broken due to the Aharonov-Casher modification in the adiabatic approximation.</p><p>The Aharonov-Casher Hamiltonian is used to determine the energy quantisation of neutral magnetic dipoles in electric fields. It is shown that for specific electric field configurations, one may acquire energy quantisation similar to the Landau effect for a charged particle in a homogeneous magnetic field.</p><p>We furthermore show how the geometric phase can be used to implement fault tolerant quantum computations. Such computations are robust to area preserving perturbations from the environment. Topological fault-tolerant quantum computations based on the Aharonov-Casher set up are also investigated.</p>
7

Quantum Holonomies : Concepts and Applications to Quantum Computing and Interferometry

Kult, David January 2007 (has links)
<p>Quantum holonomies are investigated in different contexts.</p><p>A geometric phase is proposed for decomposition dependent evolution, where each component of a given decomposition of a mixed state evolves independently. It is shown that this geometric phase only depends on the path traversed in the space of decompositions.</p><p>A holonomy is associated to general paths of subspaces of a Hilbert space, both discrete and continuous. This opens up the possibility of constructing quantum holonomic gates in the open path setting. In the discrete case it is shown that it is possible to associate two distinct holonomies to a given path. Interferometric setups for measuring both holonomies are</p><p>provided. It is further shown that there are cases when the holonomy is only partially defined. This has no counterpart in the Abelian setting.</p><p>An operational interpretation of amplitudes of density operators is provided. This allows for a direct interferometric realization of Uhlmann's parallelity condition, and the possibility of measuring the Uhlmann holonomy for sequences of density operators.</p><p>Off-diagonal geometric phases are generalized to the non-Abelian case. These off-diagonal holonomies are undefined for cyclic evolution, but must contain members of non-zero rank if all standard holonomies are undefined. Experimental setups for measuring the off-diagonal holonomies are proposed.</p><p>The concept of nodal free geometric phases is introduced. These are constructed from gauge invariant quantities, but do not share the nodal point structure of geometric phases and off-diagonal geometric phases. An interferometric setup for measuring nodal free geometric phases is provided, and it is shown that these phases could be useful in geometric quantum computation.</p><p>A holonomy associated to a sequence of quantum maps is introduced. It is shown that this holonomy is related to the Uhlmann holonomy. Explicit examples are provided to illustrate the general idea.</p>
8

Geometric and Topological Phases with Applications to Quantum Computation

Ericsson, Marie January 2002 (has links)
Quantum phenomena related to geometric and topological phases are investigated. The first results presented are theoretical extensions of these phases and related effects. Also experimental proposals to measure some of the described effects are outlined. Thereafter, applications of geometric and topological phases in quantum computation are discussed. The notion of geometric phases is extended to cover mixed states undergoing unitary evolutions in interferometry. A comparison with a previously proposed definition of a mixed state geometric phase is made. In addition, an experimental test distinguishing these two phase concepts is proposed. Furthermore, an interferometry based geometric phase is introduced for systems undergoing evolutions described by completely positive maps. The dynamics of an Aharonov-Bohm system is investigated within the adiabatic approximation. It is shown that the time-reversal symmetry for a semi-fluxon, a particle with an associated magnetic flux which carries half a flux unit, is unexpectedly broken due to the Aharonov-Casher modification in the adiabatic approximation. The Aharonov-Casher Hamiltonian is used to determine the energy quantisation of neutral magnetic dipoles in electric fields. It is shown that for specific electric field configurations, one may acquire energy quantisation similar to the Landau effect for a charged particle in a homogeneous magnetic field. We furthermore show how the geometric phase can be used to implement fault tolerant quantum computations. Such computations are robust to area preserving perturbations from the environment. Topological fault-tolerant quantum computations based on the Aharonov-Casher set up are also investigated.
9

Quantum Holonomies : Concepts and Applications to Quantum Computing and Interferometry

Kult, David January 2007 (has links)
Quantum holonomies are investigated in different contexts. A geometric phase is proposed for decomposition dependent evolution, where each component of a given decomposition of a mixed state evolves independently. It is shown that this geometric phase only depends on the path traversed in the space of decompositions. A holonomy is associated to general paths of subspaces of a Hilbert space, both discrete and continuous. This opens up the possibility of constructing quantum holonomic gates in the open path setting. In the discrete case it is shown that it is possible to associate two distinct holonomies to a given path. Interferometric setups for measuring both holonomies are provided. It is further shown that there are cases when the holonomy is only partially defined. This has no counterpart in the Abelian setting. An operational interpretation of amplitudes of density operators is provided. This allows for a direct interferometric realization of Uhlmann's parallelity condition, and the possibility of measuring the Uhlmann holonomy for sequences of density operators. Off-diagonal geometric phases are generalized to the non-Abelian case. These off-diagonal holonomies are undefined for cyclic evolution, but must contain members of non-zero rank if all standard holonomies are undefined. Experimental setups for measuring the off-diagonal holonomies are proposed. The concept of nodal free geometric phases is introduced. These are constructed from gauge invariant quantities, but do not share the nodal point structure of geometric phases and off-diagonal geometric phases. An interferometric setup for measuring nodal free geometric phases is provided, and it is shown that these phases could be useful in geometric quantum computation. A holonomy associated to a sequence of quantum maps is introduced. It is shown that this holonomy is related to the Uhlmann holonomy. Explicit examples are provided to illustrate the general idea.
10

Aplicações completamente positivas em algebras de matrizes e o teorema de Birkhoff

Demeneghi, Paulinho January 2014 (has links)
Descrevemos propriedades espectrais de aplicações positivas em C*- álgebras de dimensão finita, seguindo o trabalho clássico de Evans e Hoegh-Krohn [EH-K]. Conjuntamente, estudamos os pontos extremais do conjunto das aplicações duplamente estocásticas completamente positivas sobre Mn(C), seguindo Landau e Streater [LS]. / We describe spectral properties of positive maps over nite dimensional C* -algebras, following the classical work of Evans and H egh-Krohn [EH-K]. We also study the extremal points of the set of completely positive doubly-stochastic maps over Mn(C), following Landau and Streater [LS].

Page generated in 0.0736 seconds