• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 10
  • 10
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entanglement and Quantum Computation from a Geometric and Topological Perspective

Johansson, Markus January 2012 (has links)
In this thesis we investigate geometric and topological structures in the context of entanglement and quantum computation. A parallel transport condition is introduced in the context of Franson interferometry based on the maximization of two-particle coincidence intensity. The dependence on correlations is investigated and it is found that the holonomy group is in general non-Abelian, but Abelian for uncorrelated systems. It is found that this framework contains a parallel transport condition developed by Levay in the case of two-qubit systems undergoing local SU(2) evolutions. Global phase factors of topological origin, resulting from cyclic local SU(2) evolution, called topological phases, are investigated in the context of multi-qubit systems. These phases originate from the topological structure of the local SU(2)-orbits and are an attribute of most entangled multi-qubit systems. The relation between topological phases and SLOCC-invariant polynomials is discussed. A general method to find the values of the topological phases in an n-qubit system is described. A non-adiabatic generalization of holonomic quantum computation is developed in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. It is shown how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing transitions in a generic three-level Λ configuration. The robustness of the proposed scheme to different sources of error is investigated through numerical simulation. It is found that the gates can be made robust to a variety of errors if the operation time of the gate can be made sufficiently short. This scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.
2

Geometric and Topological Phases with Applications to Quantum Computation

Ericsson, Marie January 2002 (has links)
<p>Quantum phenomena related to geometric and topological phases are investigated. The first results presented are theoretical extensions of these phases and related effects. Also experimental proposals to measure some of the described effects are outlined. Thereafter, applications of geometric and topological phases in quantum computation are discussed.</p><p>The notion of geometric phases is extended to cover mixed states undergoing unitary evolutions in interferometry. A comparison with a previously proposed definition of a mixed state geometric phase is made. In addition, an experimental test distinguishing these two phase concepts is proposed. Furthermore, an interferometry based geometric phase is introduced for systems undergoing evolutions described by completely positive maps.</p><p>The dynamics of an Aharonov-Bohm system is investigated within the adiabatic approximation. It is shown that the time-reversal symmetry for a semi-fluxon, a particle with an associated magnetic flux which carries half a flux unit, is unexpectedly broken due to the Aharonov-Casher modification in the adiabatic approximation.</p><p>The Aharonov-Casher Hamiltonian is used to determine the energy quantisation of neutral magnetic dipoles in electric fields. It is shown that for specific electric field configurations, one may acquire energy quantisation similar to the Landau effect for a charged particle in a homogeneous magnetic field.</p><p>We furthermore show how the geometric phase can be used to implement fault tolerant quantum computations. Such computations are robust to area preserving perturbations from the environment. Topological fault-tolerant quantum computations based on the Aharonov-Casher set up are also investigated.</p>
3

Geometric and Topological Phases with Applications to Quantum Computation

Ericsson, Marie January 2002 (has links)
Quantum phenomena related to geometric and topological phases are investigated. The first results presented are theoretical extensions of these phases and related effects. Also experimental proposals to measure some of the described effects are outlined. Thereafter, applications of geometric and topological phases in quantum computation are discussed. The notion of geometric phases is extended to cover mixed states undergoing unitary evolutions in interferometry. A comparison with a previously proposed definition of a mixed state geometric phase is made. In addition, an experimental test distinguishing these two phase concepts is proposed. Furthermore, an interferometry based geometric phase is introduced for systems undergoing evolutions described by completely positive maps. The dynamics of an Aharonov-Bohm system is investigated within the adiabatic approximation. It is shown that the time-reversal symmetry for a semi-fluxon, a particle with an associated magnetic flux which carries half a flux unit, is unexpectedly broken due to the Aharonov-Casher modification in the adiabatic approximation. The Aharonov-Casher Hamiltonian is used to determine the energy quantisation of neutral magnetic dipoles in electric fields. It is shown that for specific electric field configurations, one may acquire energy quantisation similar to the Landau effect for a charged particle in a homogeneous magnetic field. We furthermore show how the geometric phase can be used to implement fault tolerant quantum computations. Such computations are robust to area preserving perturbations from the environment. Topological fault-tolerant quantum computations based on the Aharonov-Casher set up are also investigated.
4

Measurement and control of transverse photonic degrees of freedom via parity sorting and spin-orbit interaction

Leary, Cody Collin, 1981- 06 1900 (has links)
xv, 215 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / In this dissertation, several new methods for the measurement and control of transverse photonic degrees of freedom are developed. We demonstrate a mode sorter for two-dimensional (2-D) parity of transverse spatial states of light based on an out-of-plane Sagnac interferometer. The first experimental 2-D parity sorting measurements of Hermite-Gauss transverse spatial modes are presented. Due to the inherent phase stability of this type of interferometer, it provides a promising tool for the manipulation of higher order transverse spatial modes for the purposes of quantum information processing. We propose two such applications: the production of both spatial-mode entangled Bell states and heralded single photons, tailored to cover the entire Poincaré sphere of first-order transverse modes. In addition to the aforementioned transverse spatial manipulation based on free-space parity sorting, we introduce several more such techniques involving photons propagating in optical fibers. We show that when a photon propagates in a cylindrically symmetric waveguide, its spin angular momentum and its orbital angular momentum (OAM) interact. This spin-orbit interaction (SOI) leads to the prediction of several novel rotational effects: the spatial or time evolution of the photonic polarization vector is controlled by its OAM quantum number or, conversely, its spatial wave function is controlled by its spin. We demonstrate how these phenomena can be used to reversibly transfer entanglement between the spin and OAM degrees of freedom of two-particle states. In order to provide a deeper insight into the cause of the SOI for photons, we also investigate an analogous interaction for electrons in a cylindrical waveguide and find that each of the SOI effects mentioned above remain manifest for the electron case. We show that the SOI dynamics are quantitatively described by a single expression applying to both electrons and photons and explain their common origin in terms of a universal geometric phase associated with the interplay between either particle's spin and OAM. This implies that these SOI-based effects occur for any particle with spin and thereby exist independently of whether or not the particle has mass, charge, or magnetic moment. / Committee in charge: Daniel Steck, Chairperson, Physics; Michael Raymer, Member, Physics; Jens Noeckel, Member, Physics; Steven van Enk, Member, Physics; Andrew Marcus, Outside Member, Chemistry
5

Natação em espaços curvos via teoria de calibre / A gauge theory approach to the swimming in curved spaces problem

Nascimento, Danilo Borim do 16 August 2018 (has links)
Orientador: Ricardo Antonio Mosna / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T04:10:22Z (GMT). No. of bitstreams: 1 Nascimento_DaniloBorimdo_M.pdf: 2195612 bytes, checksum: 9db76fa3dc3fca1c9128da411fe240b5 (MD5) Previous issue date: 2010 / Resumo: No espaço euclidiano, deformações de corpos quase-rígidos podem gerar rotações globais líquidas que obedecem, em cada instante, a lei de conservação do momento angular (o problema do gato caindo é um exemplo). Em espaços curvos, um ciclo de deformações de um corpo pode gerar não só rotações, mas também translações globais. Este fenômeno é conhecido como efeito swimming, ou natação. Avron e Kenneth apresentaram recentemente um modelo físico para descrever este fenômeno [Avron JE, Kenneth O, New J. Phys. 8, 68 (2006)]. Os autores tratam de corpos compostos por um conjunto de massas puntiformes em variedades estáticas (no contexto não-relativístico) e calculam o deslocamento obtido por um ciclo de deformações infinitesimais. Tal deslocamento é então relacionado, no caso de corpos pequenos, à curvatura do espaço ambiente. Nesta dissertação, propomos uma nova formulação para o efeito swimming utilizando formalismo de fibrados e conexões. O espaço de configurações do sistema é descrito como o espaço total de um fibrado principal, cujo espaço base é dado pelo espaço dos formatos do sistema e o grupo estrutural é (essencialmente) dado pelas isometrias da variedade ambiente. Dotando o fibrado de uma conexão que carrega consigo a informação sobre as leis físicas de conservação, expressamos o ciclo de deformações como uma curva fechada no espaço base, o movimento do corpo como o levantamento horizontal desta curva e o deslocamento resultante como a holonomia da mesma. Por meio deste formalismo, sistematizamos o cálculo do deslocamento gerado por ciclos de deformações arbitrárias, além de obter, em cada instante e analiticamente, a evolução temporal do sistema em questão / Abstract: In Euclidean space, cyclic deformations of quasi-rigid bodies can lead to net global rotations even though they satisfy, at each moment, the angular momentum conservation law (the falling cat problem is an example). In curved spaces, cyclic changes in the body shape can also lead to rotations, but also to global translations. This phenomenon is known as the swimming effect. In a recent work, Avron and Kenneth developed a formalism to describe this phenomenon in the non-relativistic context [Avron JE, Kenneth O, New J. Phys. 8, 68 (2006)], which may be used to calculate the net displacement caused by an infinitesimal cycle of deformations of a given body. This displacement is then related, for small swimmers, to the curvature of the ambient space. In the present work, we propose a new formulation for the swimming effect in terms of principal bundles and connections. The configuration space of the system is described by the total space of a principal bundle, whose base space is given by the space of shapes of the body and whose structural group is (essentially) given by the isometries of the ambient manifold. A given deformation cycleof the body then corresponds to a loop in the base space. By defining a connection in this bundle which conveys the physical conservation laws of the system, the corresponding physical motion of the body is then given by the horizontal lift of this curve in the base space, while the net displacement of the body is given by the holonomy associated with this loop. As a result we obtain, in a systematical way, the displacement generated by arbitrary deformation cycles and we get, for each instant of time, the time evolution of the system analytically / Mestrado / Geometria e Topologia / Mestre em Matemática
6

Quantum Information Processing By NMR : Relaxation Of Pseudo Pure States, Geometric Phases And Algorithms

Ghosh, Arindam 08 1900 (has links)
This thesis focuses on two aspects of Quantum Information Processing (QIP) and contains experimental implementation by Nuclear Magnetic Resonance (NMR) spectroscopy. The two aspects are: (i) development of novel methodologies for improved or fault tolerant QIP using longer lived states and geometric phases and (ii) implementation of certain quantum algorithms and theorems by NMR. In the first chapter a general introduction to Quantum Information Processing and its implementation using NMR as well as a description of NMR Hamiltonians and NMR relaxation using Redfield theory and magnetization modes are given. The second chapter contains a study of relaxation of Pseudo Pure States (PPS). PPS are specially prepared initial states from where computation begins. These states, being non-equilibrium states, relax with time and hence introduce error in computation. In this chapter we have studied the role of Cross-Correlations in relaxation of PPS. The third and fourth chapters, respectively report observation of cyclic and non-cyclic geometric phases. When the state of a qubit is subjected to evolution either adiabatically or non-adiabatically along the surface of the Bloch sphere, the qubit sometimes gain a phase factor apart from the dynamic phase. This is known as the Geometric phase, as it depends only on the geometry of the path of evolution. Geometric phase is used in Fault tolerant QIP. In these two chapters we have demonstrated how geometric phases of a qubit can be measured using NMR. The fifth and sixth chapters contain the implementations of “No Deletion” and “No Cloning” (quantum triplicator for partially known states) theorems. No Cloning and No Deletion theorems are closely related. The former states that an unknown quantum states can not be copied perfectly while the later states that an unknown state can not be deleted perfectly either. In these two chapters we have discussed about experimental implementation of the two theorems. The last chapter contains implementation of “Deutsch-Jozsa” algorithm in strongly dipolar coupled spin systems. Dipolar couplings being larger than the scalar couplings provide better opportunity for scaling up to larger number of qubits. However, strongly coupled systems offer few experimental challenges as well. This chapter demonstrates how a strongly coupled system can be used in NMR QIP.
7

Quantum Information Processing By NMR : Quantum State Discrimination, Hadamard Spectroscopy, Liouville Space Search, Use Of Geometric Phase For Gates And Algorithms

Gopinath, T 07 1900 (has links)
The progess in NMRQIP can be outlined in to four parts.1) Implementation of theoretical protocols on small number of qubits. 2) Demonstration of QIP on various NMR systems. 3) Designing and implementing the algorithms for mixed initial states. 4) Developing the techniques for coherent and decoherent control on higher number(up to 15) of qubits. This thesis contains some efforts in the direction of first three points. Quantum-state discrimination has important applications in the context of quantum communication and quantum cryptography. One of the characteristic features of quantum mechanics is that it is impossible to devise a measurement that can distinguish nonorthogonal states perfectly. However, one can distinguish them with a finite probability by an appropriate measurement strategy. In Chapter 2, we describe the implementation of a theoretical protocol of programmable quantum-state discriminator, on a two-qubit NMR System. The projective measurement is simulated by adding two experiments. This device does the unambiguous discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and eillipitically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla quubit. The last step of any QIP protocol is the readout. In NMR-QIP the readout is done by using density matrix tomography. It was first proposed by Ernst and co-workers that a two-dimensional method can be used to correlate input and output states. This method uses an extra (aniclla) qubit, whose transitions indicate the quantum states of the remaining qubits. The 2D spectrum of ancilla qubit represent the input and output states along F1 and F2 dimensions respectively. However the 2D method requires several t1 increments to achieve the required spectral width and resolution in the indirect dimension, hence leads to large experimental time. In chapter 3, the conventional 2D NMRQIP method is speeded-up by using Hadamard spectroscopy. The Hadamard method is used to implement various two-, three-qubit gates and qutrit gates. We also use Hadamard spectroscopy for information storage under spatial encoding and to implement a parallel search algorithm. Various slices of water sample can be spatially encoded by using a multi-frequency pulse under the field gradient. Thus the information of each slice is projected to the frequency space. Each slice represents a classical bit, where excitation and no excitation corresponds to the binary values 0 and 1 respectively. However one has to do the experiment for each binary information, by synthesizing a suitable multi-frequency pulse. In this work we show that by recording the data obtained by various Hadamard encoded multi-frequency pulses, one can suitably decode it to obtain any birnary information, without doing further experiments. Geometric phases depend only on the geometry of the path executed in the projective Hilbert space, and are therefore resilient to certain types of errors. This leads to the possibility of an intrinsically fault-tolerant quantum computation. In liquid state NMRQIP. Controlled phase shift gates are achieved by using qubit selective pulses and J evolutions, and also by using geometir phases. In order to achieve higher number of qubits in NMR, one explores dipolar couplings which are larger in magnitude, yielding strongly coupled spectra. In such systems since the Hamiltonian consists of terms, it is difficult to apply qubit selective pulses. However such systems have been used for NMRQIP by considering 2n eigen states as basis states of an n-qubit system. In chapter 4, it is shown that non-adiabatic geometric phases can be used to implement controlled phase shift gates in strongly dipolar coupled systems. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Using such controlled phase shift gates, the implementation of Deutsch-Jozsa and parity algorithms are demonstrated. Search algorithms play an important role in the filed of information processing. Grovers quantum search algorithm achieves polynomial speed-up over the classical search algorithm. Bruschweiler proposed a Liouville space search algorithm which achieve polymonial speed-up. This algorithm requires a weakly coupled system with a mixed initial state. In chapter 5 we modified the Bruschweiler’s algorithm, so that it can be implemented on a weakly as well as strongly coupled system. The experiments are performed on a strongly dipolar coupled four-qubit system. The experiments from four spin-1/2 nuclei of a molecule oriented in a liquid crystal matrix. Chapter 6 describes the implementation of controlled phase shift gates on a quadrupolar spin-7/2 nucleus, using non-adiabatic geometric phases. The eight energy levels of spin-7/2 nucleus, form a three qubit system. A general procedure is given, for implementing a controlled phase shift gate on a system consisting of any number of energy levels. Finally Collin’s version of three-qubit DJ algorithm using multi-frequency pulses, is implemented in the spin-7/2 system.
8

Mesoscopic wave phenomena in electronic and optical ring structures / Mesoskopische Wellenphänomene in elektronischen und optischen Ringstrukturen

Hentschel, Martina 14 November 2001 (has links) (PDF)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
9

Mesoscopic wave phenomena in electronic and optical ring structures

Hentschel, Martina 29 October 2001 (has links)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
10

Fases geométricas, quantização de Landau e computação quâantica holonômica para partículas neutras na presença de defeitos topológicos

Bakke Filho, Knut 06 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:14:06Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1577961 bytes, checksum: c71d976d783495df566e0fa6baadf8ca (MD5) Previous issue date: 2009-08-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We start this work studying the appearance of geometric quantum phases as in the relativistic as in the non-relativistic quantum dynamics of a neutral particle with permanent magnetic and electric dipole moment which interacts with external electric and magnetic fields in the presence of linear topological defects. We describe the linear topological defects using the approach proposed by Katanaev and Volovich, where the topological defects in solids are described by line elements which are solutions of the Einstein's equations in the context of general relativity. We also analyze the in uence of non-inertial effects in the quantum dynamics of a neutral particle using two distinct reference frames for the observers: one is the Fermi-Walker reference frame and another is a rotating frame. As a result, we shall see that the difference between these two reference frames is in the presence/absence of dragging effects of the spacetime which makes its in uence on the phase shift of the wave function of the neutral particle. In the following, we shall use our study of geometric quantum phases to make an application on the Holonomic Quantum Computation, where we shall show a new approach to implement the Holonomic Quantum Computation via the interaction between the dipole moments of the neutral particle and external fields and the presence of linear topological defects. Another applications for the Holonomic Quantum Computation is based in the structure of the topological defects in graphene layers. In the presence of topological defects, a graphene layer shows two distinct phase shifts: one comes from the mix of Fermi points while the other phase shift comes from the topology of the defect. To provide a geometric description for each phase shift in the graphene layer, we use the Kaluza-Klein theory where we establish that the extra dimension describes the Fermi points in the graphene layer. Hence, we can implement the Holonomic Quantum Computation through the possibility to build cones and anticones of graphite in such way we can control the quantum uxes in graphene layers. In the last part of this work, we study the Landau quantization for neutral particles as in the relativistic dynamics and non-relativistic dynamics. In the non-relativistic dynamics, we study the Landau quantization in the presence of topological defects as in an inertial as in a non-inertial reference frame. In the relativistic quantum dynamics, we start our study with the Landau quantization in the Minkowisky considering two different gauge fields. At the end, we study the relativistic Landau quantization for neutral particles in the Cosmic Dislocation spacetime. / Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein no contexto da relatividade geral. Analisamos também a inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante. Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares, esse material apresenta duas fases quânticas de origens distintas: uma da mistura dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.

Page generated in 0.148 seconds