• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • Tagged with
  • 45
  • 45
  • 28
  • 23
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Escapement Mechanism using a Compliant Mechanism and a Piezoelectric Actuator

Mali, Girish Suresh 12 December 2007 (has links)
"Escapement mechanisms hold back a stream of parts driven either by mechanical or pneumatic means for a length of time and release a single part as required to an assembly station. They are used in most automatic multi-component assembly equipment. They occupy a significant design space and have dynamic characteristics of their own. This research aimed to develop a novel high speed mechanism for parts escapement that occupies less design space and contributes less to the dynamic activity of the structure. Several conceptual mechanisms were generated and evaluated. A compliant mechanism that amplifies the very small displacement of a piezo actuator was selected for detailed design. A proof of concept prototype was fabricated and tested. A piezo stack was used to bend a thin, spring steel, compliant beam. Its deflection was further amplified by attaching a comparatively rigid beam extension at the end of the compliant section. The mechanism escapes parts at 16 Hz using constrained layer damping on the beam to reduce vibrations. The concept is feasible to use on production machinery and provides advantages in terms of higher operating speeds and compactness. The concept could also be used where there is a requirement of high speed gating."
2

Computational Models for Design and Analysis of Compliant Mechanisms

Lan, Chao-Chieh 22 November 2005 (has links)
We consider here a class of mechanisms consisting of one or more compliant members, the manipulation of which relies on the deflection of those members. Compared with traditional rigid-body mechanisms, compliant mechanisms have the advantages of no relative moving parts and thus involve no wear, backlash, noises and lubrication. Motivated by the need in food processing industry, this paper presents the Global Coordinate Model (GCM) and the generalized shooting method (GSM) as a numerical solver for analyzing compliant mechanisms consisting of members that may be initially straight or curved. As the name suggests, the advantage of global coordinate model is that all the members share the same reference frame, and hence, greatly simplifies the formulation for multi-link and multi-axis compliant mechanisms. The GCM presents a systematic procedure with forward/inverse models for analyzing generic compliant mechanisms. Dynamic and static examples will be given and verified experimentally. We also develop the Generalized Shooting Method (GSM) to efficiently solve the equations given by the GCM. Unlike FD or FE methods that rely on fine discretization of beam members to improve its accuracy, the generalized SM that treats the boundary value problem (BVP) as an initial value problem can achieve higher-order accuracy relatively easily. Using the GCM, we also presents a formulation based on the Nonlinear Constrained Optimization (NCO) techniques to analyze contact problems of compliant grippers. For a planar problem it essentially reduces the domain of discretization by one dimension. Hence it requires simpler formulation and is computationally more efficient than other methods such as finite element analysis. An immediate application for this research is the automated live-bird transfer system developed at Georgia Tech. Success to this development is the design of compliant mechanisms that can accommodate different sizes of birds without damage to them. The feature to be monolithic also makes complaint mechanisms attracting in harsh environments such as food processing plants. Compliant mechanisms can also be easily miniaturized and show great promise in microelectromechanical systems (MEMS). It is expected that the model presented here will have a wide spectrum of applications and will effectively facilitate the process of design and optimization of compliant mechanisms.
3

Kinetostatic modelling of compliant micro-motion stages with circular flexure hinges.

Yong, Yuen Kuan January 2007 (has links)
This thesis presents a) a scheme for selecting the most suitable flexure hinge compliance equations, and b) a simple methodology of deriving kinetostatic models of micro-motion stages by incorporating the scheme mentioned above. There were various flexure hinge equations previously derived using different methods to predict the compliances of circular flexure hinges. However, some of the analytical/empirical compliance equations provide better accuracies than others depending on the t/R ratios of circular flexure hinges. Flexure hinge compliance equations derived previously using any particular method may not be accurate for a large range of t/R ratios. There was no proper scheme developed on how to select the most suitable and accurate hinge equation from the previously derived formulations. Therefore, the accuracies and limitations of the previously derived compliance equations of circular flexure hinges were investigated, and a scheme to guide designers for selecting the most suitable hinge equation based on the t/R ratios of circular flexure hinges is presented in this thesis. This thesis also presents the derivation of kinetostatic models of planar micromotion stages. Kinetostatic models allow the fulfillment of both the kinematics and the statics design criteria of micro-motion stages. A precise kinetostatic model of compliant micro-motion stages will benefit researchers in at least the design and optimisation phases where a good estimation of kinematics, workspace or stiffness of micro-motion stages could be realised. The kinetostatic model is also an alternative method to the finite-element approach which uses commercially available software. The modelling and meshing procedures using finite-element software could be time consuming. The kinetostatic model of micro-motion stages wasdeveloped based on the theory of the connection of serial and parallel springs. developed based on the theory of the connection of serial and parallel springs. The derivation of the kinetostatic model is simple and the model is expressed in closed-form equations. Material properties and link parameters are variables in this model. Compliances of flexure hinges are also one of the variables in the model. Therefore the most suitable flexure hinge equation can be selected based on the scheme aforementioned in order to calculate the kinetostatics of micro-motion stages accurately. Planar micro-motion stages with topologies of a four-bar linkage and a 3-RRR (revolute-revolute-revolute) structure were studied in this thesis. These micromotion stages are monolithic compliant mechanisms which consist of circular flexure hinges. Circular flexure hinges are used in most of the micro-motion stages which require high positioning accuracies. This is because circular flexure hinges provide predominantly rotational motions about one axis and they have small parasitic motions about the other axes. The 3-RRR micro-motion stage studied in this thesis has three-degrees-of-freedom (DOF). The 3-RRR stage consists of three RRR linkages and each RRR linkage has three circular flexure hinges. A Pseudo-Rigid-Body-Model (PRBM), a kinetostatic model and a two-dimensional finite-elementanalysis (FEA) model generated using ANSYS of micro-motion stages are presented and the results of these models were compared. Advantages of the kinetostatic model was highlighted through this comparison. Finally, experiments are presented to verify the accuracy of the kinetostatic model of the 3-RRR micromotion stage. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1289361 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007
4

On a finite element approach to modeling of piezoelectric element driven compliant mechanisms

Tjiptoprodjo, Ranier Clement 13 April 2005
Micro-motion devices may share a common architecture such that they have a main body of compliant material and some direct actuation elements (e.g., piezoelectric element). The shape of such a compliant material is designed with notches and holes on it, and in this way one portion of the material deforms significantly with respect to other portions of the material a motion in the conventional sense of the rigid body mechanism. The devices of this kind are called compliant mechanisms. Computer tools for the kinematical and dynamic motion analysis of the compliant mechanism are not well-developed. In this thesis a study is presented towards a finite element approach to the motion analysis of compliant mechanisms. This approach makes it possible to compute the kinematical motion of the compliant mechanism within which the piezoelectric actuation element is embedded, as opposed to those existing approaches where the piezoelectric actuation element is either ignored or overly simplified. Further, the developed approach allows computing the global stiffness and the natural frequency of the compliant mechanism. This thesis also presents a prototype compliant mechanism and a test bed for measuring various behaviors of the prototype mechanism. It is shown that the developed approach can improve the prediction of motions of the compliant mechanism with respect to the existing approaches based on a comparison of the measured result (on the prototype) and the simulated result. The approach to computation of the global stiffness and the natural frequency of the compliant mechanism is validated by comparing it with other known approaches for some simple mechanisms.
5

On a finite element approach to modeling of piezoelectric element driven compliant mechanisms

Tjiptoprodjo, Ranier Clement 13 April 2005 (has links)
Micro-motion devices may share a common architecture such that they have a main body of compliant material and some direct actuation elements (e.g., piezoelectric element). The shape of such a compliant material is designed with notches and holes on it, and in this way one portion of the material deforms significantly with respect to other portions of the material a motion in the conventional sense of the rigid body mechanism. The devices of this kind are called compliant mechanisms. Computer tools for the kinematical and dynamic motion analysis of the compliant mechanism are not well-developed. In this thesis a study is presented towards a finite element approach to the motion analysis of compliant mechanisms. This approach makes it possible to compute the kinematical motion of the compliant mechanism within which the piezoelectric actuation element is embedded, as opposed to those existing approaches where the piezoelectric actuation element is either ignored or overly simplified. Further, the developed approach allows computing the global stiffness and the natural frequency of the compliant mechanism. This thesis also presents a prototype compliant mechanism and a test bed for measuring various behaviors of the prototype mechanism. It is shown that the developed approach can improve the prediction of motions of the compliant mechanism with respect to the existing approaches based on a comparison of the measured result (on the prototype) and the simulated result. The approach to computation of the global stiffness and the natural frequency of the compliant mechanism is validated by comparing it with other known approaches for some simple mechanisms.
6

On-Chip Actuation of Compliant Bistable Micro-Mechanisms

Baker, Michael S. 11 March 2003 (has links) (PDF)
Two compliant bistable micro-mechanisms have been developed which can be switched in either direction using on-chip thermal actuation. The energy storage and bistable behavior of the mechanisms are achieved through the elastic deflection of compliant segments. The pseudo-rigid-body model was used for the compliant mechanism design, and for analysis of the large-deflection flexible segments. To achieve on-chip actuation, the mechanism designs were optimized to reduce their required rotation, allow them to be switched using linear-motion thermal actuators. The modeling theory and analysis are presented for several design iterations. Each iteration was successfully fabricated and tested using either the MUMPs or SUMMiT surface micromachining technology.
7

The Application of Origami to the Design of Lamina Emergent Mechanisms (LEMs) with Extensions to Collapsible, Compliant and Flat-Folding Mechanisms

Greenberg, Holly 30 April 2012 (has links) (PDF)
Lamina emergent mechanisms (LEMs) are a subset of compliant mechanisms which are fabricated from planar materials; use compliance, or flexibility of the material, to transfer energy; and have motion that emerges out of the fabrication plane. LEMs provide potential design advantages by reducing the number of parts, reducing cost, reducing weight, improving recyclability, increasing precision, and eliminating assembly, to name a few. However, there are inherent design and modeling challenges including complexities in large, non-linear deflections, singularities that exist when leaving the planar state, and the coupling of material properties and geometry in predicting mechanism behavior. This thesis examines the planar and spherical LEMs and their relation to origami. Origami, the art of paper folding, is used to better understand spherical LEMs and flat-folding mechanisms in general. All single-layer planar four-bar LEMs are given with their respective layouts. These are all change-point pinned mechanisms (i.e. no slider cranks). Graph representations are used to show the similarities between action origami and mechanisms. Origami principles of flat-folding are shown to be analogous to principles of mechanisms including rules for assembly and motion.
8

Design Modeling and Analysis of Compliant and Rigid-Body DNA Origami Mechanisms

Zhou, Lifeng 28 August 2017 (has links)
No description available.
9

Design Of A Compliant Mechanism To Amplify The Stroke Of A Piezoelectric Stack Actuator

Tamer, Keskin 01 February 2013 (has links) (PDF)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimization method is used in this study. To design the mechanism, first a design domain is defined and then a finite element model of the design domain is prepared to be used in topology optimization runs. After running the topology optimization model by using TOSCA with ANSYS, results are imported to ANSYS, where final performance of the mechanism design is checked. After finalizing design of the mechanism, it is produced and its performance is tested through experiments.
10

Design Of A Compliant Mechanism To Amplify The Stroke Of A Piezoelectric Stack Actuator

Keskin, Tamer 01 February 2013 (has links) (PDF)
Main objective of this study is to design a compliant mechanism with high frequency and high mechanical amplification ratio to be used for amplifying the stroke of a piezostack actuator. In this thesis, first of all, related literature is investigated and then alternative conceptual designs are established utilizing the mechanisms found in literature survey. Once best conceptual design is selected, detailed design of this mechanism is done. For detailed design of the compliant mechanism, topology optimization method is used in this study. To design the mechanism, first a design domain is defined and then a finite element model of the design domain is prepared to be used in topology optimization runs. After running the topology optimization model by using TOSCA with ANSYS, results are imported to ANSYS, where final performance of the mechanism design is checked. After finalizing design of the mechanism, it is produced and its performance is tested through experiments.

Page generated in 0.0714 seconds