• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • Tagged with
  • 45
  • 45
  • 28
  • 23
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modeling and Analysis of Compliant Mechanisms for Designing Nanopositioners

Shi, Hongliang January 2013 (has links)
No description available.
42

Energy Harvesting Opportunities Throughout the Nuclear Power Cycle for Self-Powered Wireless Sensor Nodes

Klein, Jackson Alexander 12 June 2017 (has links)
Dedicated sensors are widely used throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. In order to adopt a more sustainable solution, much research is being applied to self-powered sensing, implementing solutions which harvest wasted ambient energy sources to power these dedicated sensors. The adoption of not only wireless sensor nodes, but also self-powered capabilities in the nuclear energy process is critical as it can address issues in the overall safety and longevity of nuclear power. The removal of wires for data and power transmission can greatly reduce the cost of both installation and upkeep of power plants, while self-powered capabilities can further reduce effort and money spent in replacing batteries, and importantly may enable sensors to work even in losses to power across the plant, increasing plant safety. This thesis outlines three harvesting opportunities in the nuclear energy process from: thermal, vibration, and radiation sources in the main structure of the power plant, and from thermal and radiation energy from spent fuel in dry cask storage. Thermal energy harvesters for the primary and secondary coolant loops are outlined, and experimental analysis done on their longevity in high-radiation environments is discussed. A vibrational energy harvester for large rotating plant machine vibration is designed, prototyped, and tested, and a model is produced to describe its motion and energy output. Finally, an introduction to the design of a gamma radiation and thermal energy harvester for spent nuclear fuel canisters is discussed, and further research steps are suggested. / Master of Science / In this work multiple energy harvesters are investigated aimed at collecting wasted ambient energy to locally power sensor nodes in nuclear power plants, and in spent nuclear fuel canisters. Locally self-powered, wireless sensors can increase safety and reliability throughout the nuclear process. To address this a thermal energy harvester is tested in a radiation rich environment, and its performance before and after irradiation is analyzed. A vibrational energy harvester designed for use on large rotating machinery is discussed, manufactured, and tested, and a mathematical model describing it is produced. Finally, an introduction to harvesting radiation and heat given off from spent nuclear fuel in dry cask canister storage is investigated. Power capabilities for each design are considered, and the impact of such energy harvesting for wireless sensor nodes on the longevity, safety, and reliability of nuclear power plants is discussed.
43

The modelling and optimal design of a three degree-of-freedom XYθz micro-motion stage.

Handley, Daniel Charles January 2007 (has links)
This thesis presents an investigation of the modelling and optimal design of a particular 3-degree-of-freedom (DOF) XYθz micro-motion stage. This stage provides micron-scale motion in X and Y directions and a rotation about the Z-axis. Such a stage can be used for applications where positioning of components with micrometre, or even nanometre positioning accuracy is required. Some applications are; the positioning of samples in a scanning-electron-microscope; the positioning of masks in lithography; aligning fibre-optics and lasers; and manipulation of micro-scale objects in micro-biology or micro-systems assembly. The XYθz micro-motion stage investigated in this study uses a particular topology of monolithic compliant mechanism and three stack piezoelectric actuators. The compliant mechanism used is a 3RRR (three revolute-revolute-revolute) parallel compliant mechanism using flexure hinges. This parallel mechanism uses three RRR linkages. Each of the three RRR linkages uses three circular profile flexure hinges. Each flexure hinge provides predominantly rotational motion about one axis. This topology of mechanism has a symmetrical structure and provides numerous advantages that make it appropriate for use in a micro-motion stage. However, as yet this topology of compliant mechanism has only been investigated by a handful of researchers and it has not been used in any commercially developed systems. The design methodology of a stage using the 3RRR compliant mechanism has not been investigated in detail. In this thesis a study is presented that investigates different approaches to model the 3RRR compliant mechanism and also considers the piezo-actuator modelling, to give the complete XYθz micro-motion stage. Three models are presented and compared; the Pseudo-Rigid-Body Model (PRBM); a two-dimensional Finite-Element-Model (2-D FEM); and a third model is developed that is similar to the PRBM, but uses analytical equations to model the multiple degree-of-freedom compliance of the flexure hinges. The models developed are then used in parametric study so that the relationship between design parameters and output behaviour can be understood. An optimal design approach is then presented to develop an XYθz micro-motion stage for a particular application in a Scanning-Electron-Microscope (SEM). Finally experimental validation of the models is presented. The results of this study indicate which modelling approaches are accurate enough to prove useful for design, while also considering which models are computationally simple enough to be efficient and easy to use. The kinematic and dynamic behaviour of the 3RRR compliant mechanism and XYθz micro-motion stage is discussed in detail. This includes; a comprehensive description of the stage workspace, defining reachable and constant-rotation workspace areas; a discussion of actuator coupling; and in depth investigation of the modes of vibration. The results of the parametric study provide useful insight to aid the design of the XYz micro-motion stage and help simplify optimal design. The parametric study also highlights the difference in trends predicted by different modelling methods, which demonstrates the importance of using an appropriate model in design. The experimental validation demonstrates the accuracy of some modelling approaches while highlighting the limited accuracy of others. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1272186 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007
44

The modelling and optimal design of a three degree-of-freedom XYθz micro-motion stage.

Handley, Daniel Charles January 2007 (has links)
This thesis presents an investigation of the modelling and optimal design of a particular 3-degree-of-freedom (DOF) XYθz micro-motion stage. This stage provides micron-scale motion in X and Y directions and a rotation about the Z-axis. Such a stage can be used for applications where positioning of components with micrometre, or even nanometre positioning accuracy is required. Some applications are; the positioning of samples in a scanning-electron-microscope; the positioning of masks in lithography; aligning fibre-optics and lasers; and manipulation of micro-scale objects in micro-biology or micro-systems assembly. The XYθz micro-motion stage investigated in this study uses a particular topology of monolithic compliant mechanism and three stack piezoelectric actuators. The compliant mechanism used is a 3RRR (three revolute-revolute-revolute) parallel compliant mechanism using flexure hinges. This parallel mechanism uses three RRR linkages. Each of the three RRR linkages uses three circular profile flexure hinges. Each flexure hinge provides predominantly rotational motion about one axis. This topology of mechanism has a symmetrical structure and provides numerous advantages that make it appropriate for use in a micro-motion stage. However, as yet this topology of compliant mechanism has only been investigated by a handful of researchers and it has not been used in any commercially developed systems. The design methodology of a stage using the 3RRR compliant mechanism has not been investigated in detail. In this thesis a study is presented that investigates different approaches to model the 3RRR compliant mechanism and also considers the piezo-actuator modelling, to give the complete XYθz micro-motion stage. Three models are presented and compared; the Pseudo-Rigid-Body Model (PRBM); a two-dimensional Finite-Element-Model (2-D FEM); and a third model is developed that is similar to the PRBM, but uses analytical equations to model the multiple degree-of-freedom compliance of the flexure hinges. The models developed are then used in parametric study so that the relationship between design parameters and output behaviour can be understood. An optimal design approach is then presented to develop an XYθz micro-motion stage for a particular application in a Scanning-Electron-Microscope (SEM). Finally experimental validation of the models is presented. The results of this study indicate which modelling approaches are accurate enough to prove useful for design, while also considering which models are computationally simple enough to be efficient and easy to use. The kinematic and dynamic behaviour of the 3RRR compliant mechanism and XYθz micro-motion stage is discussed in detail. This includes; a comprehensive description of the stage workspace, defining reachable and constant-rotation workspace areas; a discussion of actuator coupling; and in depth investigation of the modes of vibration. The results of the parametric study provide useful insight to aid the design of the XYz micro-motion stage and help simplify optimal design. The parametric study also highlights the difference in trends predicted by different modelling methods, which demonstrates the importance of using an appropriate model in design. The experimental validation demonstrates the accuracy of some modelling approaches while highlighting the limited accuracy of others. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1272186 / Thesis (Ph.D.) -- University of Adelaide, School of Mechanical Engineering, 2007
45

Development of Deployable Wings for Small Unmanned Aerial Vehicles Using Compliant Mechanisms

Landon, Steven D. 06 July 2007 (has links) (PDF)
Unmanned Air Vehicles (UAVs) have recently gained attention due to their increased ability to perform sophisticated missions with less cost and/or risk than their manned counterparts. This thesis develops approaches to the use of compliant mechanisms in the design of deployable wings for small UAVs. Although deployable wings with rigid-link mechanisms have been used in the past to maintain flight endurance while minimizing required storage volume, compliant mechanisms offer many advantages in manufacturability and potential space savings due to function sharing of components. A number of compliant, deployable wing concepts are generated and a classification system for them is formed. The pool of generated concepts serves as a basis for stimulating future concept ideas. A methodology is also proposed for evaluating concepts for a given application. The approach to developing compliant designs for certain applications is illustrated through two example designs, which demonstrate key portions of the proposed design process. Each is modeled and analyzed to demonstrate viability.

Page generated in 0.0648 seconds