• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of robust connection models for steel and composite structures in fire

Lin, Shuyuan January 2014 (has links)
Structural engineers and architects have a responsibility for incorporating fire safety into their building designs in order to minimize loss of life and property. To meet this requirement, extensive research has been carried out, aimed at obtaining better understanding of the performance of steel and composite structures under fire conditions. Recent research indicates that the robustness of steel connections is vitally important to the fire resistance of steel-framed composite buildings. The development of effective connection models is a key issue in this research field. This PhD research is focused on the development of robust connection elements, for modelling steel connections at elevated temperatures. In this work, a robust simplified two-node connection element has been developed, for modelling the behaviour of the bolted end-plate connections between steel beam and column at elevated temperatures. The proposed numerical procedure is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determine the tension, compression, and bending moment capacities of end-plate connections in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model, the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. A total of 22 tests are used to validate the model. From these validations, it is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings. For modelling the behaviour of partial end-plate connections between steel beams and columns under fire conditions, a simplified robust 2-node connection element has also been developed. The rotational response of a partial end-plate connection at elevated temperatures comprises of two stages. These stages are due to the shift of the compression centre of the connection from the end of end-plate, to the centre of the beam bottom flange at large rotation. The model proposed in this research accounts for these two stage behaviours, representing the partial end-plate iv connection as a 2-node non-linear spring element. Characteristics of the spring, such as stiffness, tension, compression, shear strengths and bending moment resistance, are determined based on a component-based approach. This model therefore retains the advantages of both the simple and component-based models. Compared to normal component-based models, this simplified model has very good numerical stability under static solver condition, and is computationally efficient. Fourteen tests are used to validate the model, showing that the model is capable of accurately predicting the behaviour of partial end-plate connections under fire conditions. A series of numerical studies has been conducted on a 2D steel frame, subjected to ISO834 Fire and Natural Fire, in order to investigate the influences of the connections on the behaviour of steel structures. It is clear that the model can be used to represent the partial end-plate connections in performance-based fire resistance design of steel-framed composite buildings. According to full-scale fire tests, tensile membrane action within the concrete floor slabs plays an important role in affecting the fire resistance of composite buildings. It is well known that the development of tensile membrane actions relies on the vertical support along the edges of the slab panel. However, there is at present a lack of research into how vertical supports influence the tensile membrane actions of the slab. In this thesis, the performance of a generic three dimensional 45m x 45m composite floor subjected to ISO834 Fire and Natural Fire are investigated. Different vertical support conditions and three steel meshes are applied, in order to assess the impact of vertical supports on tensile membrane action of floor slabs. Unlike other existing large scale modelling which assumed that the connections behave as pinned or rigid for simplicity, the two robust 2-node connection element models described above are used to model the semi-rigid behaviour of end-plate and partial end-plate connections within the fire compartment. The impact of connections on the 3D behaviour of composite floors is taken into consideration. The load-transfer mechanisms of a composite floor, when connections fail due to axial tension, vertical shear and bending are investigated. Based on the results obtained, some design recommendations are proposed for enhancing the fire resistance of composite buildings.
2

Komponentinio IS modelio transformavimo sistema / Component - based model transformation system

Alšauskas, Žydrūnas, Kozlovskis, Linas, Mačionis, Raimondas 28 January 2008 (has links)
Kuriant informacines sistemas, tenka kurti tuos pačius sistemos komponentus, o sistemą realizuojant komponentinio modeliavimo principu, galima panaudoti jau sukurtus komponentus juos papildant, susiaurinant bei pagal poreikius koreguojant. Pagrindinis darbo tikslas - integruoti veiklos modelį ir detalų IS projekto modelį, panaudojant komponentinį sistemos projektavimo metodą. Darbe išanalizuotos Magic Draw UML 12.5 galimybės, sukurtas profailas, skirtas nubraižyti komponentinį IS modelį. Realizuota komponentinio modelio transformacijos į klasių modelį programinė įranga, sukurta MS Visual Studio .NET 2005, kuri sugeba atlikti komponentinio IS modelio transformavimą į UML klasių modelį. Atliktas eksperimentas, palygintas sukurta programine įranga sugeneruotų komponentų programinis kodas su „Magic Draw UML 12.5“ programine įranga generuotais klasių aprašais. / Presented work covers an approach to applications development based on the principles of the model-driven architecture and using the component-based system model (CBSM). The CBSM helps to refine main components and interfaces of the application at the design stage. The information system’s architecture is structured considering a business system as a set of different domains (Business, Data, Information process) with definite types of components, and with interfaces between the components of different types. Presented work is topical, when creates the same information system’s components. These components can be used and they can be modified or changed. Component - based model transformation system is created and tested with special project.
3

Déploiement d’applications patrimoniales en environnements de type informatique dans le nuage / Deploying legacy applications in cloud computing environments

Etchevers, Xavier 12 December 2012 (has links)
L'objectif de cette thèse est d'offrir une solution de bout en bout permettant de décrire et de déployer de façon fiable une application distribuée dans un environnement virtualisé. Ceci passe par la définition d'un formalisme permettant de décrirer une application ainsi que son environnement d'exécution, puis de fournir les outils capable d'interpéter ce formalisme pour déployer (installer, instancier et configurer) l'application sur une plate-forme de type cloud computing. / Cloud computing aims to cut down on the outlay and operational expenses involved in setting up and running applications. To do this, an application is split into a set of virtualized hardware and software resources. This virtualized application can be autonomously managed, making it responsive to the dynamic changes affecting its running environment. This is referred to as Application Life-cycle Management (ALM). In cloud computing, ALM is a growing but immature market, with many offers claiming to significantly improve productivity. However, all these solutions are faced with a major restriction: the duality between the level of autonomy they offer and the type of applications they can handle. To address this, this thesis focuses on managing the initial deployment of an application to demonstrate that the duality is artificial. The main contributions of this work are presented in a platform named VAMP (Virtual Applications Management Platform). VAMP can deploy any legacy application distributed in the cloud, in an autonomous, generic and reliable way. It consists of: • a component-based model to describe the elements making up an application and their projection on the running infrastructure, as well as the dependencies binding them in the applicative architecture; • an asynchronous, distributed and reliable protocol for self-configuration and self-activation of the application; • mechanisms ensuring the reliability of the VAMP system itself. Beyond implementing the solution, the most critical aspects of running VAMP have been formally verified using model checking tools. A validation step was also used to demonstrate the genericity of the proposal through various real-life implementations.

Page generated in 0.0867 seconds