• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribución al desarrollo de convertidores multinivel de alta tensión tolerantes a fallos

Poveda Lerma, Antonio 02 November 2020 (has links)
[ES] Los convertidores de potencia de estado sólido se utilizan como generadores eléctricos polifásicos de tensión o corriente para múltiples aplicaciones, como por ejemplo el control de motores, generación eléctrica, mejora de calidad de red, etc. el uso de este tipo de convertidores supone una ventaja técnica muy importante, pues permite el control preciso de las máquinas eléctricas y la conversión de energía de diferentes naturalezas que, de otro modo, no sería posible. Debido a las limitaciones propias de la técnica de los semiconductores de potencia, la potencia de un convertidor viene limitada por la capacidad de entregar corriente de dichos semiconductores o de la tensión máxima de funcionamiento de los mismos. La manera de construir un convertidor de potencia escalable en potencia se fundamenta en utilizar topologías de circuitos, en los que los semiconductores se colocan en serie o en paralelo de forma modular para incrementar la tensión y/o la corriente del convertidor. Cuanto mayor sea la limitación eléctrica de los semiconductores, más complicado se hace realizar un convertidor de alta potencia. Hoy en día existen múltiples topologias que permiten construir de forma práctica convertidores de más de 50MVA como, por ejemplo, los convertidores multinivel modulares (MMC) o los convertidores multinivel en cascada (MCHB). Estas topologías se basan en el uso de módulos o celdas independientes que se colocan en serie para generar la tensión de salida. Este tipo de convertidores, por el hecho de ser modulares y escalables, presentan la ventaja de poder seguir trabajando en caso de fallo de uno de los módulos de potencia que lo componen, lo que en grandes convertidores de potencia es de gran importancia puesto que este tipo de accionamientos suelen estar situados en el control de procesos críticos de plantas industriales o en sistemas de generación eléctrica que requieren de una alta fiabilidad de funcionamiento. Ante un fallo en uno de los módulos de potencia, el equipo puede seguir trabajando e intentando entregar la potencia máxima posible. Sin embargo, el convertidor, ante un fallo de uno (o varios) de sus módulos, no será capaz de entregar una tensión equilibrada a la salida si no se aplica algún tipo de técnica para resolver este problema. Al margen de esto, la utilización de múltiples módulos en serie en la construcción de un convertidor plantea otro inconveniente, que es que todos los módulos no son iguales ni el sistema de alimentación a dichos módulos tampoco está perfectamente equilibrado, lo que lleva a un cierto nivel de desequilibrio de tensiones de salida en el convertidor incluso aunque no haya ningún módulo en fallo. Además de todo esto, en aplicaciones en donde entre el convertidor y el dispositivo accionado haya una impedancia desequilibrada, aunque el convertidor genere una tensión equilibrada, en el dispositivo accionado, la corriente no lo será. Así pues y a modo de resumen, podemos decir que, en los convertidores de potencia, existen al menos 3 problemas importantes asociados al desequilibrio de tensiones o corrientes en la construcción y operación de un convertidor de alta potencia: 1.- Desequilibrio de tensiones debido al fallo de un módulo de potencia. 2.- Desequilibrio de tensiones debido a asimetrías constructivas del convertidor. 3.- Desequilibrio de corrientes debido a la existencia de una impedancia asimétrica entre el accionamiento y el dispositivo accionado. El presente trabajo, pretende dar solución a estos 3 problemas y, en general, desarrollar el conocimiento general en el estado de la técnica para abordar el problema del desequilibrio en los sistemas polifásicos en tiempo real. El presente estudio se ha realizado sobre un convertidor del tipo MCHB (Multilevel Cascaded H-Bridge), pero los resultados son aplicables a cualquier tipo de convertidor. / [EN] Solid-state power converters are used as multi-phase voltage or current generators for multiple applications, such as motor control, power generation, network quality improvement, etc. The use of this type of converters is a very important technical advantage, since it allows the precise control of electrical machines and the energy conversion of different natures, which otherwise would not be possible. Due to the inherent limitations of the power semiconductor technique, the power of a converter is limited by the capacity to deliver current of said semiconductors or the maximum operating voltage thereof. The way to build a power scalable power converter is based on using circuit topologies, in which the semiconductors are placed in series or in parallel in a modular way to increase the converter voltage and/or current. The greater the electrical limitation of the semiconductors, the more complicated a high-power converter is made. Nowadays, there are multiple topologies that allow the construction of more than 50MVA converters, such as, for example, modular multilevel converters (MMC) or cascade multilevel converters (MCHB). These topologies are based on the use of independent modules or cells that are placed in series to generate the output voltage. In general, these topologies use same power cells arranged in series for each phase to generate the output voltage. Each cell generates its own output voltage in such a way that the output voltage per phase is the sum of all the voltage cells, what means that if one of the cells fails, we can isolate the failed cell and continue working with the rest. This is very interesting in general, because the converter may continue working even with a failure in the power stage, but especially interesting is for huge converters, usually employed in critical industrial plant processes or energy generation plants that require a high reliability working degree. Not only is important that the converter continues working after a failure, it is also important to maximize the output voltage. Generally speaking, if one or several cells fail, the converter will not be able to give the output voltage balanced unless we perform some technique to fix this problem. Besides that, the use of multiple cells in series poses another inconvenient that is all the cells are not identical and do not generate exactly the same output voltage with the same input command so the output voltage results unbalanced even without failed cells. Additionally, in applications where the converter and the load are both far away and the electrical connection is unbalanced due to the natural asymmetry of the uneven wiring arrangement even with a balanced output voltage, the current to the load will be unbalanced as well. It's likely the load be unbalanced as well, so with the output voltage balanced and without any wiring asymmetry to the load, the currents could be also unbalanced. As summary, we may say that in huge power converters, there are at least 3 important problems associated to the voltage or current unbalances whose origin could be linked to the building, operation or the load of the converter: 1.- Voltage unbalance due to a failed power cell. 2.- Voltage unbalance due to building asymmetries. 3.- Current unbalance due to the impedance unbalance to the load. The purpose of this work is to offer a onetime solution to the 3 problems and in general, to develop the knowledge of the state of the art electrical magnitudes unbalance in multiphase electrical systems in real time. The practical approach of this work was focused in a MCHB converter (Multilevel Cascaded H-Bridge) but the results are applicable to any type of multiphase switched mode power converter. / [CA] Els convertidors de potència d'estat sòlid s'utilitzen com a generadors elèctrics polifàsics de tensió o corrent per a múltiples aplicacions, com ara el control de motors, generació elèctrica, millora de qualitat de xarxa, etc. ús d'aquest tipus de convertidors suposa un avantatge tècnica molt important, ja que permet el control precís de les màquines elèctriques i la conversió d'energia de diferents naturaleses que, d'altra manera, no seria possible. A causa de les limitacions pròpies de la tècnica dels semiconductors de potència, la potència d'un convertidor ve limitada per la capacitat de lliurar corrent d'aquests semiconductors o de la tensió màxima de funcionament dels mateixos. La manera de construir un convertidor de potència escalable en potència es fonamenta en utilitzar topologies de circuits, en els quals els semiconductors es col·loquen en sèrie o en paral·lel de forma modular per incrementar la tensió i / o el corrent del convertidor. Com més gran sigui la limitació elèctrica dels semiconductors, més complicat es fa realitzar un convertidor d'alta potència. Avui dia hi ha múltiples topologies que permeten construir de forma pràctica convertidors de més de 50MVA com, per exemple, els convertidors multinivell modulars (MMC) o els convertidors multinivell en cascada (MCHB). Aquestes topologies es basen en l'ús de mòduls o cel·les independents que es col·loquen en sèrie per generar la tensió de sortida. Aquest tipus de convertidors, pel fet de ser modulars i escalables, presenten l'avantatge de poder seguir treballant en cas de fallada d'un dels mòduls de potència que el componen, el que en grans convertidors de potència és de gran importància ja que aquest tipus d'accionaments solen estar situats en el control de processos crítics de plantes industrials o en sistemes de generació elèctrica que requereixen d'una alta fiabilitat de funcionament. Davant una fallada en un dels mòduls de potència, l'equip pot seguir treballant i intentant lliurar la potència màxima possible. No obstant això, el convertidor, davant una fallada d'un (o diversos) dels seus mòduls, no serà capaç de lliurar una tensió equilibrada a la sortida si no s'aplica alguna mena de tècnica per resoldre aquest problema. Al marge d'això, la utilització de múltiples mòduls en sèrie en la construcció d'un convertidor planteja un altre inconvenient, que és que tots els mòduls no són iguals ni el sistema d'alimentació a aquests mòduls tampoc està perfectament equilibrat, el que porta a un cert nivell de desequilibri de tensions de sortida al convertidor fins i tot encara que no hi hagi cap mòdul en fallada. A més de tot això, en aplicacions on entre el convertidor i el dispositiu accionat hagi una impedància desequilibrada, tot i que el convertidor generi una tensió equilibrada, en el dispositiu accionat, el corrent no ho serà. Així doncs i com a resum, podem dir que, en els convertidors de potència, hi ha almenys 3 problemes importants associats al desequilibri de tensions o corrents en la construcció i operació d'un convertidor d'alta potència: 1.- Desequilibri de tensions causa de la fallada d'un mòdul de potència. 2.- Desequilibri de tensions a causa de asimetries constructives del convertidor. 3.- Desequilibri de corrents a causa de l'existència d'una impedància asimètrica entre l'accionament i el dispositiu accionat. El present treball, pretén donar solució a aquests 3 problemes i, en general, desenvolupar el coneixement general en l'estat de la tècnica per abordar el problema del desequilibri en els sistemes polifàsics en temps real. El present estudi s'ha realitzat sobre un MCHB (Multilevel Cascaded H-Bridge), però els resultats són aplicables a qualsevol tipus de convertidor. / Poveda Lerma, A. (2020). Contribución al desarrollo de convertidores multinivel de alta tensión tolerantes a fallos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153806
2

Cortocircuitos en redes AT e impactos en distribución MT

Nicolau González, Guillermo 04 July 2012 (has links)
L’extensa implantació del control digital als entorns industrials, científics, comercials, professionals i domèstics ha revelat, d’ençà dues dècades, la gran sensibilitat d’aquests dispositius davant sobtats i breus descensos de tensió al subministrament elèctric de xarxa: aturades de plantes a processos productius, re – arrancades a processadors i sistemes de telecomunicació, etc.; i la causa sol esdevenir aparentment inexplicable pels usuaris. La normalització de les conseqüències, però, pot equivaler a un dia sencer de producció nul•la. L’ínfima correlació mostrada pels fenòmens esmentats amb anomalies al sistema elèctric proper (un client pot patir sèries conseqüències, per bé que el client veí només ha percebut una oscil•lació a l’enlluernat, i tots dos comparteixen la mateixa escomesa) sumada amb l’absència contrastada d’interrupció elèctrica suposà, al començament, un major grau d’incertesa, no només pels consumidors; també per a les empreses elèctriques. Fou necessari analitzar el problema en les seves vessants “microscòpica” i “macroscòpica” per a determinar la causa eficient: registrar la forma d’ona al punt de subministrament afectat i fer l’inventari de tots els incidents al Sistema Elèctric del mateix moment. La causa: els sots de tensió produïts per incidents elèctrics a xarxes remotes respecte el subministrament. Davallades sobtades (entre el 80 i el 10% del valor nominal) i ràpides (entre 10 ms i 1 s) al valor eficaç de la tensió subministrada, sense pas per “Zero”, produïdes, principalment, per curt - circuits perfectament detectats i eliminats a xarxes d’Alta Tensió (AT), molt allunyats de la conseqüència observada. A Catalunya, hom comptabilitzen afectacions davant curt - circuits a les interconnexions amb l’Aragó, Castelló i França. La present Tesi Doctoral estableix: • La metodologia per a modelar el Sistema Elèctric de Potència; • La sistematització del binomi causa (curt - circuit) – efecte (sot de tensió); • La personalització estadística de risc pel sot de tensió segons comarques; • Un sistema de protecció eficaç per a limitar la durada dels sots. La metodologia ha estat enfocada a la utilització sistemàtica, tal que per a cada curt - circuit esdevingut a la xarxa AT es pugui establir, en temps real, las capçaleres de subministrament afectades pel sot de tensió, així com la magnitud i la durada del mateix. L’entorn d’aplicació triat ha estat el Sistema Elèctric de Catalunya, per bé que la metodologia i sistemàtica són exportables, de forma natural, a qualsevol altre sistema elèctric trifàsic de corrent altern. / La implantación masiva del control digital en entornos industriales, científicos, comerciales, profesionales y domésticos ha puesto de manifiesto, durante los últimos veinte años, la gran sensibilidad de los mismos ante súbitos y breves descensos de tensión en la alimentación eléctrica procedente de la red: paradas de planta en procesos productivos, re – arranques en procesadores y sistemas de telecomunicación tienen lugar; y la causa de los mismos suele ser aparentemente inexplicable para los usuarios. La normalización de las consecuencias, en ocasiones, equivale a un día de producción nula. La escasa correlación mostrada por dichos fenómenos con anomalías en el sistema eléctrico cercano (un cliente padece consecuencias serias, mientras que el cliente vecino solamente ha percibido una oscilación en el alumbrado y ambos se alimentan del mismo tramo eléctrico) sumada con la ausencia contrastada de interrupción eléctrica supuso, en los inicios, un mayor grado de incertidumbre tanto para los consumidores como para las empresas eléctricas. Fue necesario analizar el problema a nivel “microscópico” y “macroscópico” para determinar la causa eficiente: registrar la forma de onda en el punto de suministro afectado y revisar todos los incidentes habidos en el Sistema Eléctrico en dicho instante. La causa: los huecos de tensión producidos por incidentes eléctricos en redes alejadas del suministro. Descensos súbitos (entre el 80 y el 10% del valor nominal) y rápidos (entre 10 ms y 1 s) en el valor eficaz de la tensión suministrada, sin paso por “cero” de la misma, producidos, principalmente, por cortocircuitos perfectamente detectados y eliminados en redes de Alta Tensión (AT), y situados muy lejos de la consecuencia observada. En el caso de Catalunya, se han contabilizado afectaciones ante cortocircuitos en interconexiones con Aragón, Castellón de la Plana y Francia. La presente Tesis Doctoral establece: • La metodología para modelar el Sistema Eléctrico de Potencia; • La sistematización para el binomio causa (cortocircuito) – efecto (hueco); • La personalización del riesgo estadístico de hueco vs. comarcas; • Un sistema protectivo eficaz para limitar duración de los huecos. Dicha metodología se ha orientado a la utilización sistemática, tal que para cada cortocircuito que tenga lugar en la red AT pueda establecerse, en tiempo real, las cabeceras de suministro afectadas por hueco de tensión, la magnitud y la duración del mismo. Como entorno de aplicación, se ha utilizado el Sistema Eléctrico de Catalunya, si bien la metodología y sistematización son exportables, de forma natural, a cualquier otro sistema eléctrico trifásico de corriente alterna. / The massive introduction of digital control in industrial, scientific, commercial, professional and domestic environments has revealed, over the last twenty years, the great sensitivity of them to sudden and short voltage dips in the electrical power grid: shutdowns of productive process plants, re - starts of processors and telecommunications systems take place, and the cause of them is often apparently inexplicable to the users. The normalization of the consequences sometimes is equivalent to a day without production. The weak correlation shown by these phenomena with anomalies in the nearby electrical system (i.e. in the same portion of a common distribution network, a customer may suffer serious consequences, while the adjacent customer has only percept a swing in the lighting) together with the absence of electrical power interruption represented, in the beginning, a great degree of uncertainty for both consumers and utilities. It was necessary to analyze the problem at the "microscopic" and "macroscopic" levels to determine the efficient cause: record the waveform at the affected plants and review all the disturbances occurred in the Power System at the same instant of time. The cause: voltage dips caused by electrical disturbances away from the supply. Sudden decreases (between 80 and 10% of the nominal value) and fast (between 10 ms and 1 s) in the supplied rms voltage, produced mainly by short-circuits perfectly detected and eliminated in High Voltage (HV) networks, and located far away from the observed consequence. In the case of Catalonia, affectations due to short-circuits in interconnects with Aragon, Castellón de la Plana and France have been recorded. This thesis provides: • A methodology useful to model the Power System; • A systematic analysis for cause – effect: from short – circuit to voltage dip; • A particularization voltage dip statistic risk for each county; • A reliable protective system to ensure time – limitation for voltage dips. The presented methodology is oriented to the systematic use, such that for every short - circuit that takes place in the HV network, the magnitude and duration of voltage dips that appear in the distribution can be established in real-time. As the application framework, the Catalan Power System is used, although the methodology and systematization are exportable, to any other alternating three-phase power system.

Page generated in 0.0992 seconds