• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur l'intercalation dans le graphite des alcalino-terreux et de l'europium en présence de lithium

Emery, Nicolas Hérold, Claire. January 2007 (has links) (PDF)
Thèse de doctorat : Physique et Chimie de la Matière et des Matériaux : Nancy 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr.
2

Magnetic screening currents and coupling losses induced in superconducting magnets for thermonuclear fusion / Courants d'écrantage magnétique et pertes par couplage induites dans les aimants supraconducteurs pour la fusion thermonucléaire

Louzguiti, Alexandre 01 December 2017 (has links)
Les tokamaks visent à produire de l'énergie par fusion thermonucléaire en chauffant un plasma d'hydrogène jusqu'à 150 millions K et en le confinant à l’aide d’un champ magnétique intense créé par des aimants transportant d’importants courants. La supraconductivité est un atout précieux ici car permettant de réduire la taille des aimants et leur consommation énergétique en contrepartie d’un refroidissement cryogénique. Cependant, dans les tokamaks, des variations de champ magnétique apparaissent (ex : décharge du solénoïde central) et génèrent des pertes par induction dans les aimants. Si leur température augmente trop, ils peuvent perdre leur état supraconducteur lors d’une transition brutale appelée "quench": afin de les protéger, ils sont déchargés de leur courant entraînant ainsi la perte du plasma. Nous avons concentré notre travail sur la modélisation de ces pertes car leur connaissance est cruciale pour le bon dimensionnement du refroidissement des aimants et la prédiction des limites opérationnelles du tokamak. Afin d'améliorer la compréhension physique de ce phénomène complexe et de proposer des solutions simples mais réalistes, facilement intégrables dans des plateformes multiphysiques déjà fortement sollicitées par la modélisation d'autres effets, nous avons choisi d'adopter une approche analytique. Les câbles présents dans les tokamaks ayant une architecture assez complexe (centaines de brins torsadés ensemble), nous avons mené des études analytiques et expérimentales aux différentes échelles du câble; nous comparons ensuite les résultats de notre approche à ceux d'autres modèles existants (ex : numériques) et, lorsque cela est possible, à l'expérience. / Tokamaks aim at producing energy by thermonuclear fusion heating a hydrogen plasma up to 150 million K and confining it with an intense magnetic field created by magnets carrying important currents. Superconductivity is a very valuable asset in this field since it allows to reduce the size of the magnets and their energy consumption in exchange for cooling them down to cryogenic temperatures. However, in tokamaks, magnetic field variations occur (e.g. due to the central solenoid discharge) and generate induction losses in the magnets. If their temperature increases too much, they lose their superconducting properties in a brutal transition called "quench": to protect their integrity, they are then discharged and the magnetic confinement of the plasma is lost. We have therefore focused on the modeling of these losses - more precisely on the “coupling losses” - since their knowledge is crucial to safely adapt the cryogenic cooling of the magnets and predict the operating limits of the tokamak. In order to both enhance the physical understanding of this complex phenomenon and provide simple but realistic solutions that can easily be integrated in multiphysics platforms already heavily solicited by the modeling of other effects, we have chosen to adopt an analytical approach on this problem. The cables commonly considered for tokamaks presenting a rather complex architecture (several hundreds of strands twisted together in specific patterns), we have carried out analytical and experimental studies at the different scales of the cable; we then compare the results of our approach to other existing ones (e.g. numerical models) and, when possible, to the experiment.

Page generated in 0.0939 seconds