• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 158
  • 83
  • 61
  • 37
  • 35
  • 32
  • 12
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1132
  • 155
  • 76
  • 76
  • 74
  • 74
  • 64
  • 64
  • 60
  • 56
  • 53
  • 48
  • 45
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

JAMES-STEIN TYPE COMPOUND ESTIMATION OF MULTIPLE MEAN RESPONSE FUNCTIONS AND THEIR DERIVATIVES

Feng, Limin 01 January 2013 (has links)
Charnigo and Srinivasan originally developed compound estimators to nonparametrically estimate mean response functions and their derivatives simultaneously when there is one response variable and one covariate. The compound estimator maintains self consistency and almost optimal convergence rate. This dissertation studies, in part, compound estimation with multiple responses and/or covariates. An empirical comparison of compound estimation, local regression and spline smoothing is included, and near optimal convergence rates are established in the presence of multiple covariates. James and Stein proposed an estimator of the mean vector of a p dimensional multivariate normal distribution, which produces a smaller risk than the maximum likelihood estimator if p is at least 3. In this dissertation, we also extend their idea to a nonparametric regression setting. More specifically, we present Steinized local regression estimators of p mean response functions and their derivatives. We consider different covariance structures for the error terms, and whether or not a known upper bound for the estimation bias is assumed. We also apply Steinization to compound estimation, considering the application of Steinization to both pointwise estimators (for example, as obtained through local regression) and weight functions. Finally, the new methodology introduced in this dissertation will be demonstrated on numerical data illustrating the outcomes of a laboratory experiment in which radiation induces nanoparticles to scatter evanescent waves. The patterns of scattering, as represented by derivatives of multiple mean response functions, may be used to classify nanoparticles on their sizes and structures.
392

Time-dependent modulation of cosmic rays in the outer heliosphere / Rex Manuel

Manuel, Rex January 2013 (has links)
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing intensities using a two-dimensional, time-dependent modulation model. The compound approach of Ferreira and Potgieter (2004), which describes changes in the cosmic ray transport coefficients over a solar cycle, is improved by introducing recent theoretical advances in the model. Computed intensities are compared with Voyager 1 and 2, IMP 8 and Ulysses proton observations in search of compatibility. It is shown that this approach gives realistic cosmic ray proton intensities on a global scale at Earth and along both Voyager spacecraft trajectories. The results show that cosmic ray modulation, in particular during the present polarity cycle, is not just determined by changes in the drift coefficient but is also dependent on changes in the diffusion coefficients. Furthermore, a comparison of computations to observations along the Voyager 1 and Voyager 2 trajectories illustrates that the heliosphere is asymmetrical. Assuming the latter, E > 70 MeV and 133-242 MeV cosmic ray proton intensities along Voyager 1 and 2 trajectories are predicted from 2012 onwards. It is shown that the computed intensities along Voyager 1 can increase with an almost constant rate since the spacecraft is close to the heliopause. However, the model shows that Voyager 2 is still under the influence of temporal solar activity changes because of the relatively large distance to the heliopause when compared to Voyager 1. Along the Voyager 2 trajectory the intensities should remain generally constant for the next few years and then should start to steadily increase. It is also found that without knowing the exact location of heliopause and transport parameters one cannot conclude anything about local interstellar spectra. The effect of a dynamic inner heliosheath width on cosmic ray modulation is also studied by implementing a time-dependent termination shock position in the model. This does not lead to improved compatibility with spacecraft observations so that a time-dependent termination shock along with a time-dependent heliopause position is required. The variation of the heliopause position over a solar cycle is found to be smaller compared to that of the termination shock. The model predicts the heliopause and termination shock positions along Voyager 1 in 2012 at 119 AU and 88 AU respectively and along Voyager 2 at 100 AU and 84 AU respectively. / Thesis (PhD (Space Physics))--North-West University, Potchefstroom Campus, 2013
393

Time-dependent modulation of cosmic rays in the outer heliosphere / Rex Manuel

Manuel, Rex January 2013 (has links)
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing intensities using a two-dimensional, time-dependent modulation model. The compound approach of Ferreira and Potgieter (2004), which describes changes in the cosmic ray transport coefficients over a solar cycle, is improved by introducing recent theoretical advances in the model. Computed intensities are compared with Voyager 1 and 2, IMP 8 and Ulysses proton observations in search of compatibility. It is shown that this approach gives realistic cosmic ray proton intensities on a global scale at Earth and along both Voyager spacecraft trajectories. The results show that cosmic ray modulation, in particular during the present polarity cycle, is not just determined by changes in the drift coefficient but is also dependent on changes in the diffusion coefficients. Furthermore, a comparison of computations to observations along the Voyager 1 and Voyager 2 trajectories illustrates that the heliosphere is asymmetrical. Assuming the latter, E > 70 MeV and 133-242 MeV cosmic ray proton intensities along Voyager 1 and 2 trajectories are predicted from 2012 onwards. It is shown that the computed intensities along Voyager 1 can increase with an almost constant rate since the spacecraft is close to the heliopause. However, the model shows that Voyager 2 is still under the influence of temporal solar activity changes because of the relatively large distance to the heliopause when compared to Voyager 1. Along the Voyager 2 trajectory the intensities should remain generally constant for the next few years and then should start to steadily increase. It is also found that without knowing the exact location of heliopause and transport parameters one cannot conclude anything about local interstellar spectra. The effect of a dynamic inner heliosheath width on cosmic ray modulation is also studied by implementing a time-dependent termination shock position in the model. This does not lead to improved compatibility with spacecraft observations so that a time-dependent termination shock along with a time-dependent heliopause position is required. The variation of the heliopause position over a solar cycle is found to be smaller compared to that of the termination shock. The model predicts the heliopause and termination shock positions along Voyager 1 in 2012 at 119 AU and 88 AU respectively and along Voyager 2 at 100 AU and 84 AU respectively. / Thesis (PhD (Space Physics))--North-West University, Potchefstroom Campus, 2013
394

Performance modelling of wormhole-routed hypercubes with bursty traffice and finite buffers

Kouvatsos, Demetres D., Assi, Salam, Ould-Khaoua, Mohamed January 2005 (has links)
An open queueing network model (QNM) is proposed for wormhole-routed hypercubes with finite buffers and deterministic routing subject to a compound Poisson arrival process (CPP) with geometrically distributed batches or, equivalently, a generalised exponential (GE) interarrival time distribution. The GE/G/1/K queue and appropriate GE-type flow formulae are adopted, as cost-effective building blocks, in a queue-by-queue decomposition of the entire network. Consequently, analytic expressions for the channel holding time, buffering delay, contention blocking and mean message latency are determined. The validity of the analytic approximations is demonstrated against results obtained through simulation experiments. Moreover, it is shown that the wormholerouted hypercubes suffer progressive performance degradation with increasing traffic variability (burstiness).
395

Characterization of Evoked Potentials During Deep Brain Stimulation in the Thalamus

Kent, Alexander Rafael January 2013 (has links)
<p>Deep brain stimulation (DBS) is an established surgical therapy for movement disorders. The mechanisms of action of DBS remain unclear, and selection of stimulation parameters is a clinical challenge and can result in sub-optimal outcomes. Closed-loop DBS systems would use a feedback control signal for automatic adjustment of DBS parameters and improved therapeutic effectiveness. We hypothesized that evoked compound action potentials (ECAPs), generated by activated neurons in the vicinity of the stimulating electrode, would reveal the type and spatial extent of neural activation, as well as provide signatures of clinical effectiveness. The objective of this dissertation was to record and characterize the ECAP during DBS to determine its suitability as a feedback signal in closed-loop systems. The ECAP was investigated using computer simulation and <italic>in vivo</italic> experiments, including the first preclinical and clinical ECAP recordings made from the same DBS electrode implanted for stimulation. </p><p>First, we developed DBS-ECAP recording instrumentation to reduce the stimulus artifact and enable high fidelity measurements of the ECAP at short latency. <italic>In vitro</italic> and <italic>in vivo</italic> validation experiments demonstrated the capability of the instrumentation to suppress the stimulus artifact, increase amplifier gain, and reduce distortion of short latency ECAP signals.</p><p>Second, we characterized ECAPs measured during thalamic DBS across stimulation parameters in anesthetized cats, and determined the neural origin of the ECAP using pharmacological interventions and a computer-based biophysical model of a thalamic network. This model simulated the ECAP response generated by a population of thalamic neurons, calculated ECAPs similar to experimental recordings, and indicated the relative contribution from different types of neural elements to the composite ECAP. Signal energy of the ECAP increased with DBS amplitude or pulse width, reflecting an increased extent of activation. Shorter latency, primary ECAP phases were generated by direct excitation of neural elements, whereas longer latency, secondary phases were generated by post-synaptic activation.</p><p>Third, intraoperative studies were conducted in human subjects with thalamic DBS for tremor, and the ECAP and tremor responses were measured across stimulation parameters. ECAP recording was technically challenging due to the presence of a wide range of stimulus artifact magnitudes across subjects, and an electrical circuit equivalent model and finite element method model both suggested that glial encapsulation around the DBS electrode increased the artifact size. Nevertheless, high fidelity ECAPs were recorded from acutely and chronically implanted DBS electrodes, and the energy of ECAP phases was correlated with changes in tremor. </p><p>Fourth, we used a computational model to understand how electrode design parameters influenced neural recording. Reducing the diameter or length of recording contacts increased the magnitude of single-unit responses, led to greater spatial sensitivity, and changed the relative contribution from local cells or passing axons. The effect of diameter or contact length varied across phases of population ECAPs, but ECAP signal energy increased with greater contact spacing, due to changes in the spatial sensitivity of the contacts. In addition, the signal increased with glial encapsulation in the peri-electrode space, decreased with local edema, and was unaffected by the physical presence of the highly conductive recording contacts.</p><p>It is feasible to record ECAP signals during DBS, and the correlation between ECAP characteristics and tremor suggests that this signal could be used in closed-loop DBS. This was demonstrated by implementation in simulation of a closed-loop system, in which a proportional-integral-derivative (PID) controller automatically adjusted DBS parameters to obtain a target ECAP energy value, and modified parameters in response to disturbances. The ECAP also provided insight into neural activation during DBS, with the dominant contribution to clinical ECAPs derived from excited cerebellothalamic fibers, suggesting that activation of these fibers is critical for DBS therapy.</p> / Dissertation
396

Modelling of 3D anisotropic turbulent flow in compound channels

Vyas, Keyur January 2007 (has links)
The present research focuses on the development and computer implementation of a novel threedimensional, anisotropic turbulence model not only capable of handling complex geometries but also the turbulence driven secondary currents. The model equations comprise advanced algebraic Reynolds stress models in conjunction with Reynolds Averaged Navier-Stokes equations. In order to tackle the complex geometry of compound meandering channels, the body-fitted orthogonal coordinate system is used. The finite volume method with collocated arrangement of variables is used for discretization of the governing equations. Pressurevelocity coupling is achieved by the standard iterative SIMPLE algorithm. A central differencing scheme and upwind differencing scheme are implemented for approximation of diffusive and convective fluxes on the control volume faces respectively. A set of algebraic equations, derived after discretization, are solved with help of Stones implicit matrix solver. The model is validated against standard benchmarks on simple and compound straight channels. For the case of compound meandering channels with varying sinuosity and floodplain height, the model results are compared with the published experimental data. It is found that the present method is able to predict the mean velocity distribution, pressure and secondary flow circulations with reasonably good accuracy. In terms of engineering applications, the model is also tested to understand the importance of turbulence driven secondary currents in slightly curved channel. The development of this unique model has opened many avenues of future research such as flood risk management, the effects of trees near the bank on the flow mechanisms and prediction of pollutant transport.
397

Flow characteristics in compound channels with and without vegetation

Sun, Xin January 2007 (has links)
The flow characteristics in compound channels with and without vegetation on the floodplain were investigated experimentally and numerically in this thesis. Detailed measurements of velocity and boundary shear stress, using a Pitot tube and an acoustic Doppler velocimeter together with a Preston tube, were undertaken to understand the flow characteristics in compound channels. Eight no-rod cases, two emergent-rod cases and two submerged-rod cases were tested. Unsteady large eddies that occur in the shear layer were explored numerically with Large Eddy Simulation (LES) to identify its generation and its effects on the flow behaviors. Mean flow parameters were predicted using the quasi-2D model by considering the shear effect. Usirgg the data of depth-averaged velocity and boundary shear stress, the contributions of shear-generated turbulence and bed-generated turbulence to the Reynolds shear stress were identified, the apparent shear stress was calculated using the modified method of Shiono and Knight (1991) and the depth-averaged secondary current force was then obtained. Large eddies were important to the lateral momentum exchange in shallow non-vegetated compound channels and even in deep vegetated compound channels. In the compound channel with one-line rods at the floodplain edge, the secondary current forces were of opposite signs in the main channel and on the floodplain and the bed shear stress was smaller than the standard two-dimensional value of yHSo due to the vegetation effect, where y,H,So are the specific weight of water, water depth and bed slope respectively. In vegetated compound channels, the velocity patterns were different to those and the discharges were smaller than those in non-vegetated compound channels under similar relative water depth conditions. The anisotropy of turbulence was the main contribution to the generation of secondary currents in non-vegetated and vegetated compound channels, but the Reynolds stress term was more important in the vegetated compound channels. Results of cross spectra showed the mechanisms of the turbulent shear generation near the main channel-floodplain junction are due to large eddies in the non-vegetated compound channel and owing to wakes in the vegetated compound channel. LES results indicated that large eddies caused significant spatial and temporal fluctuations of velocity and water level in the compound channel and the instantaneousv alues of these flow parameters were significantly higher than the mean values. In vegetated compound channels, the flow moved from the main channel to the floodplain and from the floodplain to the main channel alternately. The characteristic frequencies of the large eddy were less than 1Hz which was consistent with the experimental data. The capability of the quasi-2D model to predict the 2D mean flow parameters in compound channels were assessed under different flow conditions and also improved by using the mean wall velocity as the boundary condition and appropriate values of the lateral gradient of the secondary current force. In the vegetated compound channels, new approaches were proposed to treat the drag force in the cases of oneline emergent rods at the floodplain edge and submerged rods on the floodplain.
398

Thermal Performance of a Solarus CPC-Thermal Collector

Šumić, Mersiha January 2014 (has links)
The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013.
399

Atmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and Sources of Perfluorinated Acids

Young, Cora Jean Louise 15 September 2011 (has links)
Fluorinated compounds are environmentally persistent and have been demonstrated to bioaccumulate and contribute to climate change. The focus of this work was to better understand the atmospheric chemistry of poly- and per-fluorinated compounds in order to appreciate their impacts on the environment. Several fluorinated compounds exist for which data on climate impacts do not exist. Radiative efficiencies (REs) and atmospheric lifetimes of two new long-lived greenhouse gases (LLGHGs) were determined using smog chamber techniques: perfluoropolyethers and perfluoroalkyl amines. Through this, it was observed that RE was not directly related to the number of carbon-fluorine bonds. A structure-activity relationship was created to allow the determination of RE solely from the chemical structure of the compound. Also, a novel method was developed to detect polyfluorinated LLGHGs in the atmosphere. Using carbotrap, thermal desorption and cryogenic extraction coupled to GC-MS, atmospheric measurements can be made for a number of previously undetected compounds. A perfluoroalkyl amine was detected in the atmosphere using this technique, which is the compound with the highest RE ever detected in the atmosphere. Perfluorocarboxylic acids (PFCAs) are water soluble and non-volatile, suggesting they are not susceptible to long-range transport. A hypothesis was derived to explain the ubiquitous distribution of these compounds involving atmospheric formation of PFCAs from volatile precursors. Using smog chamber techniques with offline analysis, perfluorobutenes and fluorotelomer iodides were shown to yield PFCAs from atmospheric oxidation. Dehydrofluorination of perfluorinated alcohols (PFOHs) is poorly understood in the mechanism of PFCA atmospheric formation. Using density functional techniques, overtone-induced photolysis was shown to lead to dehydrofluorination of PFOHs. In the presence of water, this mechanism could be a sink of PFOHs in the atmosphere. Confirmation of the importance of volatile precursors was derived from examination of snow from High Arctic ice caps. This provided the first empirical evidence of atmospheric deposition. Through the analytes observed, fluxes and temporal trends, it was concluded that atmospheric oxidation of volatile precursors is an important source of PFCAs to the Arctic.
400

Effect of Nutrition on In Vitro Biofilm Formation of Gastrointestinal Associated Microbes

Hokazono, Asuka 03 October 2013 (has links)
Gastrointestinal (GI) health is an important contributor to one’s overall well-being. In the past decade, the focus of this aspect of health has been on the organisms that inhabit the intestines: gut microbes. A concept central to understanding bacterial behavior for health or disease promotion is biological film (biofilm) formation. The predominant form of growth for bacteria is biofilm formation, an as yet poorly described phenomenon for gut microbes. In order to better understand bacterial behavior in response to nutrients that pass through the GI system, a high throughput system to assess biofilm formation was developed. Gastrointestinal-associated microbes, Escherichia coli and Enterococcus faecalis, were assayed for biofilm formation in 96-well plates after 24 hours of incubation. Nutrients, inter-and intrakingdom signaling molecules such as monosaccharides, calcium, insulin, endocannabinoids, and AI-1, AI-2 like signaling compounds, respectively, were added to cultures in order to test their effects on biofilm formation. Biofilm was quantified spectrophotometrically by the measurement of optical density of each well measured at 580nm following crystal violet staining of adherent biofilm. Values were expressed as means ± standard error of the mean (SEM); differences between means were assessed using t-testing and ANOVA using GraphPad Prism, with mean differences considered significant at P < 0.05. Results showed that biofilm formation by E. coli was enhanced by glucose, galactose, lactose, AI-1 like signaling compound and insulin at 50 and 100µU/ml, while AI-2 like compound and calcium inhibited biofilm formation. Biofilm formation by E. faecalis was also enhanced by AI-1 like compound and insulin at 50µU/ml in RPMI medium and inhibited in cultures grown in BHI medium or with added calcium. We conclude that gastrointestinal-associated microbes are influenced by nutrients as well as various factors, including the culture medium, signaling compounds, as well as host-signaling compounds such as insulin and calcium. This study provides a platform required for future studies involving nutrient effect on biofilm formation.

Page generated in 0.0486 seconds