• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 14
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 59
  • 24
  • 22
  • 22
  • 21
  • 21
  • 18
  • 18
  • 17
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The effects of hyperbaric environments on exercise metabolism

Hanson, R.de G. January 1979 (has links)
No description available.
12

Analyzing Compressed Air Demand Trends to Develop a Method to Calculate Leaks in a Compressed Air Line Using Time Series Pressure Measurements

Daniel, Ebin John 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Compressed air is a powerful source of stored energy and is used in a variety of applications varying from painting to pressing, making it a versatile tool for manufacturers. Due to the high cost and energy consumption associated with producing compressed air and it’s use within industrial manufacturing, it is often referred to as a fourth utility behind electricity, natural gas, and water. This is the reason why air compressors and associated equipment are often the focus for improvements in the eyes of manufacturing plant managers. As compressed air can be used in multiple ways, the methods used to extract and transfer the energy from this source vary as well. Compressed air can flow through different types of piping, such as aluminum, Polyvinyl Chloride (PVC), rubber, etc. with varying hydraulic diameters, and through different fittings such as 90-degree elbows, T-junctions, valves, etc. which can cause one of the major concerns related to managing the energy consumption of an air compressor, and that is the waste of air through leaks. Air leaks make up a considerable portion of the energy that is wasted in a compressed air system, as they cause a multitude of problems that the compressor will have to make up for to maintain the steady operation of the pneumatic devices on the manufacturing floor that rely on compressed air for their application. When air leaks are formed within the compressed air piping network, they act as continuous consumers and cause not only the siphoning off of said compressed air, put also reduce the pressure that is needed within the pipes. The air compressors will have to work harder to compensate for the losses in the pressure and the amount of air itself, causing an overconsumption of energy and power. Overworking the air compressor also causes the internal equipment to be stretched beyond its capabilities, especially if they are already running at full loads, reducing their total lifespans considerably. In addition, if there are multiple leaks close to the pneumatic devices on the manufacturing floor, the immediate loss in pressure and air can cause the devices to operate inefficiently and thus cause a reduction in production. This will all cumulatively impact the manufacturer considerably when it comes to energy consumption and profits. There are multiple methods of air leak detection and accounting that currently exist so as to understand their impact on the compressed air systems. The methods are usually conducted when the air compressors are running but during the time when there is no, or minimal, active consumption of the air by the pneumatic devices on the manufacturing floor. This time period is usually called non-production hours and generally occur during breaks or between employee shift changes. This time is specifically chosen so that the only air consumption within the piping is that of the leaks and thus, the majority of the energy and power consumed during this time is noted to be used to feed the air leaks. The collected data is then used to extrapolate and calculate the energy and power consumed by these leaks for the rest of the year. There are, however, a few problems that arise when using such a method to understand the effects of the leaks in the system throughout the year. One of the issues is that it is assumed that the air and pressure lost through the found leaks are constant even during the production hours i.e. the hours that there is active air consumption by the pneumatic devices on the floor, which may not be the case due to the increased air flow rates and varying pressure within the line which can cause an increase in the amount of air lost through the same orifices that was initially detected. Another challenge that arises with using only the data collected during a single non-production time period is that there may be additional air leaks that may be created later on, and the energy and power lost due to the newer air leaks would remain unaccounted for. As the initial estimates will not include the additional losses, the effects of the air leaks may be underestimated by the plant managers. To combat said issues, a continuous method of air leak analyses will be required so as to monitor the air compressors’ efficiency in relation to the air leaks in real time. By studying a model that includes both the production, and non-production hours when accounting for the leaks, it was observed that there was a 50.33% increase in the energy losses, and a 82.90% increase in the demand losses that were estimated when the effects of the air leaks were observed continuously and in real time. A real time monitoring system can provide an in-depth understanding of the compressed air system and its efficiency. Managing leaks within a compressed air system can be challenging especially when the amount of energy wasted through these leaks are unaccounted for. The main goal of this research was to find a nonintrusive way to calculate the amount of air as well as energy lost due to these leaks using time series pressure measurements. Previous studies have shown a strong relationship between the pressure difference, and the use of air within pneumatic lines, this correlation along with other factors has been exploited in this research to find a novel and viable method of leak accounting to develop a Continuous Air Leak Monitoring (CALM) system.
13

Some compressed air tests at high altitude

Robson, Thomas Cueller. January 1930 (has links) (PDF)
Thesis (Professional Degree)--University of Missouri, School of Mines and Metallurgy, 1930. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed November 30, 2009) Includes bibliographical references (p. 26).
14

Analysis of compressed air usage in textile manufacturing for energy conservation

Robinson, Andrew Jordan January 2001 (has links)
No description available.
15

Challenges faced during implementation of a compressed air energy savings project on a gold mine / Gerhardus Petrus Heyns

Heyns, Gerhardus Petrus January 2014 (has links)
MIng (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015 / Demand side management (DSM) initiatives have been introduced by Eskom to reduce the deficit between the electricity generation capacity and the electricity usage within the country. DSM projects enable Eskom to reduce electricity demand instead of increasing generation capacity. DSM projects are more economical and can be implemented much faster than constructing a new power station. One particular industry where DSM projects can be implemented is on mines. Mines consume about 14.5% of South Africa’s electricity. Producing compressed air, in particular, is one of the largest electricity users on mines. It consumes 17% of the electricity used on mines. The opportunity, therefore, arises to implement DSM projects on the compressed air system of mines. Not only do these projects reduce Eskom’s high electricity demand, but they also induce financial and energy savings for the mine itself. However, during the implementation of a compressed air energy savings project, various challenges arise. These include, among others, operational changes, control limitations, industrial actions and installation delays. All of these can lead to a project not being delivered on time, within budget or with quality results. The purpose of this study is to investigate and address various problems that occur during the implementation of such a compressed air energy savings project. The study shows that although these problems have an impact on the results achievable with the project, significant savings are still possible. Project savings are achieved by reducing the amount of compressed air that is supplied, thereby delivering sufficient compressed air while minimising the amount of compressed air being wasted. During this study, a gold mine’s compressed air network was optimised. The optimisation resulted in an evening peak-clip saving of 2.61 MW. This saving was achieved daily between 18:00 and 20:00 when Eskom’s electricity demand was at its highest. It is equivalent to an annual cost saving of R1.46 million based on Eskom’s 2014/2015 tariffs. When savings from all periods throughout the day are taken into account, the project will produce an annual cost saving of R1.91 million.
16

The cost-effectiveness of comprehensive system control on a mine compressed air network / Stephanus Nicolaas van der Linde

Van der Linde, Stephanus Nicolaas January 2014 (has links)
Compressed air leakage accounts for up to 42% of electrical energy loss on a typical mine compressed air system. By using underground control valves it is possible to reduce the amount of air leakage. Underground valve control was successfully implemented in a South African mine. The project implementation and achieved results are documented in this study. The implementation of underground control valves initially requires a large capital investment. In this study the electrical and financial savings realised by underground valve control and surface valve control were calculated. The payback periods for each control strategy were determined and compared. It was determined that underground valve control can realise up to 40% higher electrical savings than surface control. Depending on the size of the mine and due to the large initial investment, the payback period for an underground valve control system can be up to six times longer than that of a surface control system. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
17

Challenges faced during implementation of a compressed air energy savings project on a gold mine / Gerhardus Petrus Heyns

Heyns, Gerhardus Petrus January 2014 (has links)
MIng (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2015 / Demand side management (DSM) initiatives have been introduced by Eskom to reduce the deficit between the electricity generation capacity and the electricity usage within the country. DSM projects enable Eskom to reduce electricity demand instead of increasing generation capacity. DSM projects are more economical and can be implemented much faster than constructing a new power station. One particular industry where DSM projects can be implemented is on mines. Mines consume about 14.5% of South Africa’s electricity. Producing compressed air, in particular, is one of the largest electricity users on mines. It consumes 17% of the electricity used on mines. The opportunity, therefore, arises to implement DSM projects on the compressed air system of mines. Not only do these projects reduce Eskom’s high electricity demand, but they also induce financial and energy savings for the mine itself. However, during the implementation of a compressed air energy savings project, various challenges arise. These include, among others, operational changes, control limitations, industrial actions and installation delays. All of these can lead to a project not being delivered on time, within budget or with quality results. The purpose of this study is to investigate and address various problems that occur during the implementation of such a compressed air energy savings project. The study shows that although these problems have an impact on the results achievable with the project, significant savings are still possible. Project savings are achieved by reducing the amount of compressed air that is supplied, thereby delivering sufficient compressed air while minimising the amount of compressed air being wasted. During this study, a gold mine’s compressed air network was optimised. The optimisation resulted in an evening peak-clip saving of 2.61 MW. This saving was achieved daily between 18:00 and 20:00 when Eskom’s electricity demand was at its highest. It is equivalent to an annual cost saving of R1.46 million based on Eskom’s 2014/2015 tariffs. When savings from all periods throughout the day are taken into account, the project will produce an annual cost saving of R1.91 million.
18

The cost-effectiveness of comprehensive system control on a mine compressed air network / Stephanus Nicolaas van der Linde

Van der Linde, Stephanus Nicolaas January 2014 (has links)
Compressed air leakage accounts for up to 42% of electrical energy loss on a typical mine compressed air system. By using underground control valves it is possible to reduce the amount of air leakage. Underground valve control was successfully implemented in a South African mine. The project implementation and achieved results are documented in this study. The implementation of underground control valves initially requires a large capital investment. In this study the electrical and financial savings realised by underground valve control and surface valve control were calculated. The payback periods for each control strategy were determined and compared. It was determined that underground valve control can realise up to 40% higher electrical savings than surface control. Depending on the size of the mine and due to the large initial investment, the payback period for an underground valve control system can be up to six times longer than that of a surface control system. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
19

Baselining a compressed air system an expert systems approach /

Senniappan, Arul Prasad. January 2004 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xiii, 148 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 90-95).
20

A grid-level assessment of compressed air energy storage in ERCOT

Townsend, Aaron Keith 11 November 2013 (has links)
In the Electric Reliability Council of Texas (ERCOT) compressed air energy storage (CAES) is currently viewed as the most promising energy storage technology due to Texas having suitable geology for CAES and few locations suitable for pumped-hydro storage. CAES is a proven technology but the economics for new facilities are uncertain. This work quantified the economic prospects for CAES in ERCOT as a function of installed wind capacity, natural gas price, and CAES capital cost. Two types of models were developed and used in this work. The first type of model was a CAES dispatch optimization model, which determined the maximum operating profits a CAES facility could earn given a set of electricity and ancillary services market prices. These models were used to examine several separate research questions relating to the maximum potential for CAES and the impact of uncertainty and other real-world complications. The models determined that the maximum operating profit from 2002-2010 varied widely from year to year and averaged $120-140/kW-year, which is likely below the operating profits required to justify investing in CAES. The models also determined that current price forecasting methods are sufficient to earn approximately 95% of the operating profits achievable with perfect knowledge of all prices in the year. The second type of model was a unit commitment model of ERCOT, which determined the least-cost operation of all the generators in the generation fleet to meet given load. The unit commitment model was used to determine electricity and ancillary service market prices under different assumptions about natural gas price, installed wind capacity, and installed CAES capacity. The CAES dispatch optimization model was then used to determine the operating profits of a CAES facility under these scenarios. CAES operating profits were found to increase with increasing natural gas price and installed wind capacity and to decrease with increasing installed CAES capacity. CAES operating profits were estimated to support installed CAES capacities from zero to more than 6 GW, depending on the natural gas price, installed wind capacity, installed CAES capacity, and the CAES capital costs. The strongest determinant of the maximum CAES capacity that would be profitable is the natural gas price, followed by the CAES capital costs. / text

Page generated in 0.0528 seconds