• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconfiguring mining compressed air networks for cost savings / Johannes Izak Gabriël Bredenkamp

Bredenkamp, Johannes Izak Gabriël January 2014 (has links)
The world is currently experiencing major issues in the energy sector. The ever-growing human population, limited energy resources and the effect of greenhouse gas emissions have become major global concerns for the energy sector, including the electricity generation sector. This dilemma caused electricity providers to revise their generation methods and created a major need for consumers to utilise electricity more efficiently. Demand side management (DSM) is one initiative developed for consumers to efficiently utilise electricity. Due to their high electricity consumption and technical skills, mines are ideal targets for the implementation of DSM strategies. Therefore, the focus of this study was to investigate South African mines for possible implementation of DSM strategies on their compressed air networks. Compressed air networks at South African mines are relatively old and inadequately maintained. This causes inefficient distribution and use of compressed air. The study will therefore focus on reconfiguring mining compressed air networks for cost savings. Cost savings include financial savings on electricity bills, implementation costs and decreased maintenance. Through several investigations, the possibility of implementing energy savings strategies to reconfigure the compressed air networks of two South African mines was identified. Reconfiguring the networks would respectively entail interconnecting two shafts and relocating a compressor from an abandoned shaft to a fully productive shaft. Theoretical simulations were developed to determine the networks’ responses to the reconfiguration strategies. The simulations assisted in exposing the viability of implementing the reconfiguration strategies on the respective compressed air networks. Positive responses were obtained from the simulations and proposals were made to the respective mines for possible implementation. The proposed initiatives were implemented on the respective mines’ compressed air networks. After implementation of the interconnection strategy, a consecutive three-month performance assessment period commenced to prove the viability of the proposed savings. An average power saving of 1 700 kW was achieved during the performance assessment period. The proposed initiative to relocate the compressor is currently being implemented. A financial saving of approximately R8.9 million per annum was achieved by implementing the interconnection strategy. The large financial saving was due to the utilisation of the mine’s salvaged equipment. Further savings were achieved by the decreased maintenance on the mine’s compressors. Due to the successful implementation of the interconnection strategy, it is safe to state that cost savings can be achieved by reconfiguring mining compressed air networks. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
2

Reconfiguring mining compressed air networks for cost savings / Johannes Izak Gabriël Bredenkamp

Bredenkamp, Johannes Izak Gabriël January 2014 (has links)
The world is currently experiencing major issues in the energy sector. The ever-growing human population, limited energy resources and the effect of greenhouse gas emissions have become major global concerns for the energy sector, including the electricity generation sector. This dilemma caused electricity providers to revise their generation methods and created a major need for consumers to utilise electricity more efficiently. Demand side management (DSM) is one initiative developed for consumers to efficiently utilise electricity. Due to their high electricity consumption and technical skills, mines are ideal targets for the implementation of DSM strategies. Therefore, the focus of this study was to investigate South African mines for possible implementation of DSM strategies on their compressed air networks. Compressed air networks at South African mines are relatively old and inadequately maintained. This causes inefficient distribution and use of compressed air. The study will therefore focus on reconfiguring mining compressed air networks for cost savings. Cost savings include financial savings on electricity bills, implementation costs and decreased maintenance. Through several investigations, the possibility of implementing energy savings strategies to reconfigure the compressed air networks of two South African mines was identified. Reconfiguring the networks would respectively entail interconnecting two shafts and relocating a compressor from an abandoned shaft to a fully productive shaft. Theoretical simulations were developed to determine the networks’ responses to the reconfiguration strategies. The simulations assisted in exposing the viability of implementing the reconfiguration strategies on the respective compressed air networks. Positive responses were obtained from the simulations and proposals were made to the respective mines for possible implementation. The proposed initiatives were implemented on the respective mines’ compressed air networks. After implementation of the interconnection strategy, a consecutive three-month performance assessment period commenced to prove the viability of the proposed savings. An average power saving of 1 700 kW was achieved during the performance assessment period. The proposed initiative to relocate the compressor is currently being implemented. A financial saving of approximately R8.9 million per annum was achieved by implementing the interconnection strategy. The large financial saving was due to the utilisation of the mine’s salvaged equipment. Further savings were achieved by the decreased maintenance on the mine’s compressors. Due to the successful implementation of the interconnection strategy, it is safe to state that cost savings can be achieved by reconfiguring mining compressed air networks. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014

Page generated in 0.2674 seconds