Spelling suggestions: "subject:"computation graph"" "subject:"omputation graph""
1 |
Evaluation de l'affectation des tâches sur une architecture à mémoire distribuée pour des modèles flot de données / Efficient evaluation of mappings of dataflow applications onto distributed memory architecturesLesparre, Youen 02 March 2017 (has links)
Avec l'augmentation de l'utilisation des smartphones, des objets connectés et des véhicules automatiques, le domaine des systèmes embarqués est devenu omniprésent dans notre environnement. Ces systèmes sont souvent contraints en terme de consommation et de taille. L'utilisation des processeurs many-cores dans des systèmes embarqués permet une conception rapide tout en respectant des contraintes temps-réels et en conservant une consommation énergétique basse.Exécuter une application sur un processeur many-core requiert un dispatching des tâches appelé problème de mapping et est connu comme étant NP-complet.Les contributions de cette thèse sont divisées en trois parties :Tout d'abord, nous étendons d'importantes propriétés dataflow au modèle Phased Computation Graph.Ensuite, nous présentons un générateur de graphe dataflow capable de générer des Synchonous Dataflow Graphs, Cyclo-Static Dataflow Graphs et Phased Computation Graphs vivant avec plus de 10000 tâches en moins de 30 secondes. Le générateur est comparé à SDF3 et PREESM.Enfin, la contribution majeure de cette thèse propose une nouvelle méthode d'évaluation d'un mapping en utilisant les modèles Synchonous Dataflow Graphe et Cyclo-Static Dataflow Graphe. La méthode évalue efficacement la mémoire consommée par les communications d'un dataflow mappé sur une architecture à mémoire distribuée. L'évaluation est déclinée en deux versions, la première garantit la vivacité alors que la seconde ajoute une contrainte de débit. La méthode d'évaluation est expérimentée avec des dataflow générés par Turbine et avec des applications réelles. / With the increasing use of smart-phones, connected objects or automated vehicles, embedded systems have become ubiquitous in our living environment. These systems are often highly constrained in terms of power consumption and size. They are more and more implemented with many-core processor array that allow, rapid design to meet stringent real-time constraints while operating at relatively low frequency, with reduced power consumption.Running an application on a processor array requires dispatching its tasks on the processors in order to meet capacity and performance constraints. This mapping problem is known to be NP-complete.The contributions of this thesis are threefold:First we extend important notions from the Cyclo-Static Dataflow Graph to the Phased Computation Graph model and two equivalent sufficient conditions of liveness.Second, we present a random dataflow graph generator able to generate Synchonous Dataflow Graphs, Cyclo-Static Dataflow Graphs and Phased Computation Graphs. The Generator, is able to generate live dataflow of up to 10,000 tasks in less than 30 seconds. It is compared with SDF3 and PREESM.Third and most important, we propose a new method of evaluation of a mapping using the Synchonous Dataflow Graph and the Cyclo-Static Dataflow Graph models. The method evaluates efficiently the memory footprint of the communications of a dataflow graph mapped on a distributed architecture. The evaluation is declined in two versions, the first guarantees a live mapping while the second accounts for a constraint on throughput.The evaluation method is experimented on dataflow graphs from Turbine and on real-life applications.
|
2 |
Application of local semantic analysis in fault prediction and detectionShao, Danhua 06 October 2010 (has links)
To improve quality of software systems, change-based fault prediction and scope-bounded checking have been used to predict or detect faults during software development. In fault prediction, changes to program source code, such as added lines or deleted lines, are used to predict potential faults. In fault detection, scope-bounded checking of programs is an effective technique for finding subtle faults. The central idea is to check all program executions up to a given bound. The technique takes two basic forms: scope-bounded static checking, where all bounded executions of a program are transformed into a formula that represents the violation of a correctness property and any solution to the formula represents a counterexample; or scope-bounded testing where a program is tested against all (small) inputs up to a given bound on the input size.
Although the accuracies of change-based fault prediction and scope-bounded checking have been evaluated with experiments, both of them have effectiveness and efficiency limitations. Previous change-based fault predictions only consider the code modified by a change while ignoring the code impacted by a change. Scope-bounded testing only concerns the correctness specifications, and the internal structure of a program is ignored. Although scope-bounded static checking considers the internal structure of programs, formulae translated from structurally complex programs might choke the backend analyzer and fail to give a result within a reasonable time.
To improve effectiveness and efficiency of these approaches, we introduce local semantic analysis into change-based fault prediction and scope-bounded checking. We use data-flow analysis to disclose internal dependencies within a program. Based on these dependencies, we identify code segments impacted by a change and apply fault prediction metrics on impacted code. Empirical studies with real data showed that semantic analysis is effective and efficient in predicting faults in large-size changes or short-interval changes. While generating inputs for scope-bounded testing, we use control-flow to guide test generation so that code coverage can be achieved with minimal tests. To increase the scalability of scope-bounded checking, we split a bounded program into smaller sub-programs according to data-flow and control-flow analysis. Thus the problem of scope-bounded checking for the given program reduces to several sub-problems, where each sub-problem requires the constraint solver to check a less complex formula, thereby likely reducing the solver’s overall workload. Experimental results show that our approach provides significant speed-ups over the traditional approach. / text
|
Page generated in 0.1069 seconds