Spelling suggestions: "subject:"computational fluid clynamics"" "subject:"computational fluid ctynamics""
161 |
Effect of wind on near-shore breaking wavesUnknown Date (has links)
The aim of this project is to identify the effect of wind on near-shore breaking waves. A breaking wave was created using a simulated beach slope configuration. Testing was done on two different beach slope configurations. The effect of offshore winds of varying speeds was considered. Waves of various frequencies and heights were considered. A parametric study was carried out. The experiments took place in the Hydrodynamics lab at FAU Boca Raton campus. The experimental data validates the knowledge we currently know about breaking waves. Offshore winds effect is known to increase the breaking height of a plunging wave, while also decreasing the breaking water depth, causing the wave to break further inland. Offshore winds cause spilling waves to react more like plunging waves, therefore increasing the height of the spilling wave while consequently decreasing the breaking water depth. / by Faydra Schaffer. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
162 |
Computational Modeling of Tethered Undersea Kites for Power GenerationGhasemi, Amirmahdi 01 February 2018 (has links)
Ocean currents and tidal energy are significant renewable energy resources, and new concepts to extract this untapped energy have been studied in the last decades. Tethered undersea kite (TUSK) systems are an emerging technology which can extract ocean current energy. TUSK systems consist of a rigid-winged kite, or glider, moving in an ocean current. One proposed concept uses an extendable tether between the kite and a generator spool on a fixed or floating platform. As the kite moves across the current at high speeds, hydrodynamic forces on the kite tension the tether which extends to turn the generator spool. Since the TUSK system is a new technology, the process of bringing a TUSK design to commercial deployment is long and costly, and requires understanding of the underlying flow physics. The use of computational simulation has proven to be successful in reducing development costs for other technologies. Currently, almost all computational tools for analysis of TUSK systems are based on linearized hydrodynamic equations in place of the full Navier-Stokes equations. In this dissertation, the development of a novel computational tool for simulation of TUSK systems is described. The numerical tool models the flow field in a moving three-dimensional domain near the rigid undersea kite wing. A two-step projection method along with Open Multi-Processing (OpenMP) on a regular structured grid is employed to solve the flow equations. In order to track the rigid kite, which is a rectangular planform wing with a NACA-0012 airfoil, an immersed boundary method is used. A slip boundary condition is imposed at the kite interface to decrease the computational run- time while accurately estimating the kite lift and drag forces. A PID control method is also used to adjust the kite pitch, roll and yaw angles during power (tether reel-out) and retraction (reel-in) phases to obtain desired kite trajectories. A baseline simulation study of a full-scale TUSK wing is conducted. The simulation captures the expected cross-current, figure-8 motions during a kite reel-out phase where the tether length increases and power is generated. During the following reel-in phase the kite motion is along the tether, and kite hydrodynamic forces are reduced so that net positive power is produced. Kite trajectories, hydrodynamic forces, vorticity contours near the kite, kite tether tension and output power are determined and analyzed. The performance and accuracy of the simulations are assessed through comparison to theoretical estimations for kite power systems. The effect of varying the tether (and kite) velocity during the retraction phase is studied. The optimum condition for the tether velocity is observed during reel-in phase to increase the net power of a cycle. The results match theoretical predictions for tethered wind energy systems. Moreover, the effect of the tether drag on the kite motion and resulting power output is investigated and compared with the results of the baseline simulation. The kite drag coefficient increases by 25% while the effect of the tether drag is included into the baseline simulation. It affects the trajectory and the velocity of the kite. However, it has a small effect on the power generation for the proposed concept of TUSK system.
|
163 |
CAD-based geometry parametrisation for shape optimisation using non-uniform rational B-splinesZhang, Xingchen January 2018 (has links)
With the continuous growth in computing power, numerical optimisation is increasingly applied in shape optimisation using Computational Fluid Dynamics (CFD). Since CFD computations are expensive, gradient-based optimisation is preferable when the number of design variables is large. In particular the recent progress with adjoint solvers is important, as these solvers allow to compute the gradients at constant computational cost regardless of the number of design variables, and as a consequence enable the use of automatically derived and rich design spaces. One of the crucial steps in shape optimisation is the parametrisation of the geometry, which directly determines the design space and thus the nal results. This thesis focuses on CAD-based parametrisations with the CAD model continuously updated in the design loop. An existing approach that automatically derives a parametrisation from the control points of a net of B-Spline patches is extended to include NURBS. Continuity constraints for water-tightness, tangency and curvature across patch interfaces are evaluated numerically and a basis for the resulting design space is computed using Singular Value Decomposition (SVD). A CAD-based shape optimisation framework is developed, coupling a flow solver, an adjoint solver, the in-house CAD kernel and a gradient-based optimiser. The flow sensitivities provided by the adjoint solver and the geometric sensitivities computed through automatic differentiation (AD) are assembled and provided to the optimiser. An extension to maintain the design space and hence enables use of a quasi-Newton method such as the BFGS algorithm is also presented and the convergence improvements are demonstrated. The framework is applied to three shape optimisation cases to show its effectiveness. The performance is assessed and analysed. The effect of parameters that can be chosen by the user are analysed over a range of cases and best practice choices are identified.
|
164 |
Pore-scale investigation of wettability effects on two-phase flow in porous mediaRabbani, Harris January 2018 (has links)
Physics of immiscible two-phase flow in porous media is relevant for various industrial and environmental applications. Wettability defined as the relative affinity of fluids with the solid surface has a significant impact on the dynamics of immiscible displacement. Although wettability effects on the macroscopic fluid flow behaviour are well known, there is a lack of pore-scale understanding. Considering the crucial role of wettability in a diverse range of applications; this research aims to provide a pore-scale picture of interface configuration induced by variations in the wetting characteristics of porous media. Besides, this study also relates the pore-scale interfacial phenomena with the macroscopic response of fluids. High-resolution direct numerical simulations (DNS) at multiscale (single capillary and a highly heterogeneous porous media) were performed using computational fluid dynamics (CFD) approach in which the Navier-Stokes equation coupled with the volume of fluid method is solved to represent immiscible displacement. Numerical results demonstrate that at pore scale as the wettability of porous media changes from strong to intermediate wet the effects of pore geometry (that includes corner angle and orientation angle) on the interfacial dynamics also enhances. This was demonstrated by the non-monotonic behaviour of entry capillary pressure at the junction of pore, curvature reversal in the converging-diverging capillary and the co-existence of concave and convex interfaces in heterogeneous porous media with uniform contact angle distribution. In addition to simulations, theoretical argument is also presented that rationalize the underlying physics of complex, yet intriguing interfacial phenomena shown by DNS. Overall this research extends the fundamental understanding of multiphase flow in porous media and paves the way for future studies on porous media.
|
165 |
Turbulence modelling for horizontal axis wind turbine rotor bladesAbdulqadir, Sherwan Ahmed January 2017 (has links)
This Thesis aims to assess the reliability of turbulence models in predicting the flow fields around the horizontal axis wind turbine (HAWT) rotor blades and also to improve our understanding of the aerodynamics of the flow field around the blades. The simulations are validated against data from the NREL/NASA Phase VI wind turbine experiments. The simulations encompass the use of fourteen turbulence models including low-and high-Reynolds-number, linear and non-linear eddy-viscosity models and Reynolds stress models. The numerical procedure is based on the finite-volume discretization of the 3D unsteady Reynolds-Averaged Navier-Stokes equations in an inertial reference frame with the sliding mesh technique to follow the motion of the rotor blades. Comparisons of power coefficient, normalised thrust, local surface pressure coefficients (CP) and the radial variation of the section average of normal force coefficients with published experimental data over a range of tip-speed ratios, lead to the identification of the turbulence models that can reliably reproduce the values of the key performance indicators. The main contributions of this study are in establishing which RANS models can produce quantitatively reliable simulations of wind turbine flows and in presenting the flow evolution over a range of operating conditions. At low (relative to the blade tip speed) wind speeds the flow over the blade surfaces remains attached and all RANS models return the correct values of key performance coefficients. At higher wind speeds there is circumferential flow separation over the downwind surface of the blade, which eventually spreads over the entire surface, Moreover, within the separation bubble the centrifugal force pumps the flow outwards, which at the higher wind speeds suppresses the formation of the classical tip vortices. More refined RANS models which do not rely on the linear effective viscosity approximation generally lead to more reliable predictions over this range of higher wind speeds. In particular the Gibson-Launder version of the Reynolds stress transport model and the high-Re versions of the Lien et al non-linear k-ε produce consistently reliable simulations over the entire range of wind speeds. By contrast some popular linear effective viscosity models, like the SST (k-ω) and the v^2-f, perform the poorest over this complex flow range. Finally all RANS models are also able to predict the dominant (lowest) frequency of the pressure fluctuations and the non-linear effective viscosity models, the Launder and Shima version of RSM and the SST are also able to return some of the higher frequencies measured.
|
166 |
Adjoint-Based Optimization of Turbomachinery With Applications to Axial and Radial TurbinesMüller, Lasse 07 January 2019 (has links) (PDF)
Numerical optimization methods have made significant progress over the last decades and play an important role in modern industrial design processes. In most cases, gradient-free algorithms are used, which only require the value of the objective function in each optimization step. These methods are robust and can be integrated into a standard design process at low implementation effort. However, in aerodynamic design problems using high-fidelity Computational Fluid Dynamics (CFD), the computational cost is high, especially when a large number of design parameters are used. Gradient-based methods, on the other hand, are particularly suited for problems involving large design spaces and generally converge to a local optimum in a few design cycles. However, the computational efficiency of these methods is mainly determined by the gradient calculation.This thesis presents the development of an efficient gradient-based optimization framework for the aerodynamic design of turbomachinery applications. In particular, the adjoint approach is used to evaluate the gradients of the objective function with respect to all design parameters at low computational cost. The present work covers the various components of the optimization framework, including the solution of the flow governing equations, adjoint-based sensitivity analysis, geometry parameterization, and mesh generation. A substantial part of the thesis describes the implementation and validation of those components. The flow solver is a Reynolds-Averaged Navier-Stokes code applicable to multiblock structured grids. The spatial discretization is realized with a Roe-type upwind scheme with a MUSCL extrapolation for second order spatial accuracy. Viscous fluxes are centrally discretized, and for the turbulence closure problem the Spalart-Allmaras and the Shear-Stress Transport (SST) models are used. The code uses an implicit multistage Runge-Kutta time-stepping scheme, accelerated by local time-stepping and geometric multigrid. The corresponding discrete adjoint solver uses the same time marching scheme as the flow solver and features similar performance characteristics in terms of runtime and memory footprint. The adjoint solver has been implemented primarily by hand with selective use of algorithmic differentiation (AD) to simplify the development. The geometry parameterization is based on B-Spline representations which has two main advantages: (a) the simple integration of geometric constraints for structural requirements, and (b) the connection to Computer-Aided Design (CAD) software for manufacturing. The whole optimization framework is driven by a Sequential Quadratic Programming (SQP) algorithm. The proposed framework has been successfully applied to optimize axial and radial turbines on multiple operating points subject to aerodynamic and geometric constraints. The different studies show the effectiveness of the developed method in terms of improved performances and computational cost. In particular, a comparative study shows that the proposed method is able to find optimized blade shapes at a computational time which is about one order of magnitude lower compared to a gradient-free optimization algorithm. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
167 |
Engine LES with fuel-spray modeling /Ribeiro, Mateus Dias, 1989. January 2015 (has links)
Orientador: Maurício Araújo Zanardi / Coorientador: José Antônio Perrella Balestieri / Coorientador: Andreas Kempf / Banca: Alex Mendonça Bimbato / Banca: Márcio Teixeura Mendonça / Resumo: O motor de combustão interna é a principal fonte de energia de automóveis, sendo de grande importância para o setor de energia no mundo. Com o aparecimento de problemas relacionados com a emissão exagerada de poluentes e gases de efeito estufa, o desenvolvimento de modelos que corretamente descrevem os fenômenos físicos que ocorrem no interior da câmara de combustão de motores tornou-se relevante. Assim, na primeira parte deste trabalho a biblioteca de modelos de fonte aberta de dinâmica de fluidos computacional (CFD) OpenFOAM com módulos desenvolvidos na Universidade de Duisburg-Essen foi utilizada para investigar o efeito do volume das fendas no desenvolvimento da combustão em motores convencionais com ignição por centelha. As simulações de grandes escalas (LES, large eddy simulation) realizadas foram validadas com visualizações de câmeras de alta velocidade obtidas do motor óptico de Duisburg, que mostraram a presença de uma frente luminosa no interior da fenda anular que poderia ser associada a uma chama se propagando. Os resultados apresentados mostraram boa concordância qualitativa com os dados experimentais, o que permitiu concluir que no caso do motor de Duisburg, a chama é realmente capaz de penetrar no volume da fenda. Em seguida, um estudo sobre sprays combustíveis foi realizado, por se tratar de uma tendência muito promissora em motores modernos. Atenção especial foi dada aos fenômenos de conservação de momento, ruptura, evaporação e mistura do caso de teste "Spray G" da rede de combustão em motores (ECN, engine combustion network). Os processos de ruptura e evaporação foram investigados e simulados, sendo os resultados interpretados de acordo com os modelos utilizados. O comprimento de penetração foi validado com experimentos e uma boa concordância foi atingida. Finalmente, um estudo de sensibilidade da malha foi realizado e seus resultados apresentados e discutidos / Abstract: The internal combustion engine is the major energy source of automobiles and is of large importance for the energy sector worldwide. As problems related to exaggerated pollutant and greenhouse gases emissions emerged, the development of models to correctly describe the physical phenomena taking place inside the combustion chamber of engines became relevant. Thus, in the first part of this work the open source CFD library OpenFOAM with modules developed at the University of Duisburg-Essen was used to investigate the effect of the crevice volume on the performance of the combustion in port fuel injection spark ignition engines. The LES (large eddy simulation) simulations were validated against high speed flame visualization obtained from the Duisburg optical engine, which showed the presence of a luminous front inside the top land crevice that could be a wrinkled flame. The presented results showed good qualitative agreement with the experimental data, which allowed the conclusion that in the case of the Duisburg engine, the flame indeed penetrates into the crevice volume. Furthermore, a study on fuel sprays was performed, since this is a very promising trend related to modern engines. Special attention was given to the phenomena of momentum exchange, droplet breakup, evaporation and mixture from the test case "Spray G" provided by the Engine Combustion Network (ECN). The processes of droplet breakup and evaporation were investigated and simulated, being the results interpreted according to the models used. The penetration length was validated against experiments and good agreement was obtained. Finally, a mesh sensitivity study was performed and the results presented and discussed / Mestre
|
168 |
Numerical modelling of shock wave boundary layer interactions in aero-engine intakes at incidenceKalsi, Hardeep Singh January 2019 (has links)
Aero-engine intakes play a critical role in the performance of modern high-bypass turbofan engines. It is their function to provide uniformly distributed, steady air flow to the engine fan face under a variety of flow conditions. However, during situations of high incidence, high curvature of the intake lip can accelerate flow to supersonic speeds, terminating with a shock wave. This produces undesirable shock wave boundary layer interactions (SWBLIs). Reynolds-Averaged Navier Stokes (RANS) turbulence models have been shown to be insensitive to the effects of boundary layer relaminarisation present in these highly-accelerated flows. Further, downstream of the SWBLI, RANS methods fail to capture the distorted flow that propagates towards the engine fan face. The present work describes simulations of a novel experimental intake rig model that replicates the key physics found in a real intake- namely acceleration, shock and SWBLI. The model is a simple geometric configuration resembling a lower intake lip at incidence. Simulations are carried out at two angles of attack, $\alpha=23^{\circ}$ and $\alpha=25^{\circ}$, with the more aggressive $\alpha=25^{\circ}$ possessing a high degree of shock oscillation. RANS, Large Eddy Simulations (LES) and hybrid RANS-LES are carried out in this work. Modifications to the one-equation Spalart-Allmaras (SA) RANS turbulence model are proposed to account for the effects of re-laminarisation and curvature. The simulation methods are validated against two canonical test cases. The first is a subsonic hump model where RANS modifications give a noticeable improvement in surface pressure predictions, even for this mild acceleration case. However, RANS is shown to over-predict the separation size. LES performs much better here, as long as the Smagorinsky-Lilly SGS model is not used. The $\sigma$-SGS model is found to perform best, and is used to run a hybrid RANS-LES that predicts a separation bubble size within $4\%$ of LES. The second canonical test case is a transonic hump that features a normal shockwave and SWBLI. RANS performs well here, predicting shock location, surface pressure and separation with good agreement with experimental measurements. Hybrid RANS-LES also performs well, but predicts a shock downstream of that measured by experiment. The use of an improved shock sensor here is able to maintain solution accuracy. Simulations of the intake rig are then run. RANS modifications provide a significant improvement in prediction of the shock location and lip surface pressure compared to the standard SA model. However, RANS models fail to reproduce the post shock interaction flow well, giving incorrect shape of the flow distortion. Further, RANS is inherently unable to capture the unsteady shock oscillations and related flow features. LES and hybrid RANS-LES predict the shock location and SWBLI well, with the downstream flow distortion also in very good agreement with experimental measurements. LES and hybrid RANS-LES are able to reproduce the time averaged smearing of the shock which RANS cannot. However, shock oscillations in the $\alpha=25^{\circ}$ case present a particular challenge for costly LES, requiring long simulation time to obtain time averaged flow statistics. Hybrid RANS-LES offers a significant saving in computational expense, costing approximately $20\%$ of LES. The work proposes recommendations for simulation strategy for intakes at incidence based on computational cost and performance of simulation methods.
|
169 |
EFFECTS OF SLIPPER SURFACE SHAPING AND SWASHPLATE VIBRATION ON SLIPPER-SWASHPLATE INTERFACE PERFORMANCEAshkan Abbaszadeh Darbani (5930510) 16 October 2019 (has links)
<p>This thesis investigates the effects of swashplate vibration
and slipper surface geometry on the performance of the slipper-swashplate
interface. The lubricating interfaces within a swashplate type axial piston
machine are the most complicated part of the design process. These interfaces
are supposed to provide support to the significant loads they experience during
operation and to prevent continuous contact of the sliding surfaces. Therefore a
proper slipper-swashplate interface design ensures full film lubrication during
operation and provides sufficient load support while minimizing viscous and
volumetric losses at the same time. The effects of two factors on the
performance of the slipper-swashplate are examined during this work; swashplate
vibration and slipper surface micro-geometry. An already existing model of the
slipper-swashplate interface was used to carry out the results for this work
however some modifications were made to the model to suit the needs of this
research. Swashplate vibration is a phenomenon that has not been implemented in
the model before, therefore its effects on the performance of the interface
were analyzed. Thickness of the fluid film in the lubricating regime corresponds
with its performance and is directly affected by the micro-geometry of the
sliding interfaces. Therefore the effects of slipper surface micro-geometry is
crucial to study in order to find the optimal slipper-swashplate interface
design.</p>
|
170 |
URANS V&V for KCS free running course keeping and maneuvering simulations in calm water and regular head/oblique wavesKim, Dong-Hwan 01 January 2019 (has links)
The capability of CFD is assessed by utilizing CFDShip-Iowa V4.5 for the prediction of the 6DOF motion responses, forces, moments and the local flow field of the 2.7m KCS model in various weather/operating conditions. The discretized propeller is preferred and the rudder is designed to be active up to ±35 degrees. Grid triplets are generated with the refinement ratio √2 and verification is achieved for the resistance and propeller open water tests while for the other tests is only partially fulfilled. The verification shows unsmooth convergence, however, the errors from grid triplets are small. The propeller open water test validates the performance of the discretized propeller successfully. The free decay tests could predict reasonable heave/pitch/roll natural frequencies. The resistance test verifies the nominal wake distribution. The self-propulsion test using discretized propeller shows 18% higher propeller inflow and 0.1 thrust deduction factor compared to resistance test. A propeller blade that sweeps the starboard experienced higher thrust inducing non-axisymmetric propeller wake and thus affecting the angle of attack of the rudder. Neutral rudder angle diminishes effective angle of attack and keeps the course straight. Maneuvering simulations could predict qualitatively good agreement for validation variables while the trajectory needs more improvement. Using the discretized propeller for the head/oblique wave course-keeping simulations achieved validation successfully. The RAO of added thrust, torque and propeller rotational speed resembles the RAO of added-resistance except showing larger values during long waves. The mean propeller efficiency is at the minimum when the ship experiences a resonance. The first harmonic amplitude of the propeller efficiency increases followed by the increase of the wavelength.
|
Page generated in 0.1365 seconds