• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 677
  • 231
  • 110
  • 46
  • 42
  • 20
  • 20
  • 16
  • 11
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • Tagged with
  • 1735
  • 1735
  • 1735
  • 459
  • 399
  • 356
  • 227
  • 226
  • 194
  • 177
  • 172
  • 158
  • 155
  • 149
  • 148
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

CFD modeling of heat exchange fouling

Walker, Patrick Gareth, Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Heat exchanger fouling is the deposition of material onto the heat transfer surface causing a reduction in thermal efficiency. A study using Computational Fluid Dynamics (CFD) was conducted to increase understanding of key aspects of fouling in desalination processes. Fouling is a complex phenomenon and therefore this numerical model was developed in stages. Each stage required a critical assessment of each fouling process in order to design physical models to describe the process???s intricate kinetic and thermodynamic behaviour. The completed physical models were incorporated into the simulations through employing extra transport equations, and coding additional subroutines depicting the behaviour of the aqueous phase involved in the fouling phenomena prominent in crystalline streams. The research objectives of creating a CFD model to predict fouling behaviour and assess the influence of key operating parameters were achieved. The completed model of the key crystallisation fouling processes monitors the temporal variation of the fouling resistance. The fouling rates predicted from these results revealed that the numerical model satisfactorily reproduced the phenomenon observed experimentally. Inspection of the CFD results at a local level indicated that the interface temperature was the most influential operating parameter. The research also examined the likelihood that the crystallisation and particulate fouling mechanisms coexist. It was found that the distribution of velocity increased the likelihood of the particulate phase forming within the boundary layer, thus emphasizing the importance of differentiating between behaviour within the bulk and the boundary layer. These numerical results also implied that the probability of this composite fouling was greater in turbulent flow. Finally, supersaturation was confirmed as the key parameter when precipitation occurred within the bulk/boundary layer. This investigation demonstrated the advantages of using CFD to assess heat exchanger fouling. It produced additional physical models which when incorporated into the CFD code adequately modeled key aspects of the crystallisation and particulate fouling mechanisms. These innovative modelling ideas should encourage extensive use of CFD in future fouling investigations. It is recommended that further work include detailed experimental data to assist in defining the key kinetic and thermodynamic parameters to extend the scope of the required physical models.
222

Finite-Rate Chemistry Effects in Turbulent Premixed Combustion

Dunn, Matthew John January 2008 (has links)
Doctor of Philosophy (PhD) / In recent times significant public attention has been drawn to the topic of combustion. This has been due to the fact that combustion is the underlying mechanism of several key challenges to modern society: climate change, energy security (finite reserves of fossil fuels) and air pollution. The further development of combustion science is undoubtedly necessary to find improved solutions to manage these combustion science related challenges in the near and long term future. Combustion is essentially an exothermic process, this exothermicity or heat release essentially occurs at small scales, by small scales it meant these scales are small relative to the fluid length scales, for example heat release layer thicknesses in flames are typically much less than the fluid integral length scales. As heat release occurs at small scales this means that in turbulent combustion the small scales of the turbulence (which can be of the order of the heat release layer thickness) can possibly interact and influence the heat release and thus chemistry of the flame reaction zone. Premixed combustion is a combustion mode where the fuel and oxidiser are completely premixed prior to the flame reaction zone, this mode of combustion has been shown to be a promising method to maximise combustion efficiency and minimise pollutant formation. The continued and further application of premixed combustion to practical applications is limited by the current understanding of turbulent premixed combustion, these limitations in understanding are linked to the specific flame phenomena that can significantly influence premixed combustion in a combustion device, examples of such phenomena are: flame flashback, flame extinction and fuel consumption rate – all phenomena that are influenced by the interaction of the small scales of turbulence and chemistry. It is the study and investigation of the interaction of turbulence and chemistry at the small scales (termed finite-rate chemistry) in turbulent premixed flames that is the aim of this thesis which is titled “Finite-rate chemistry effects in turbulent premixed combustion”. Two very closely related experimental burner geometries have been developed in this thesis: the Piloted Premixed Jet Burner (PPJB) and the Premixed Jet Burner (PJB). Both feature an axisymmetric geometry and exhibit a parabolic like flow field. The PPJB and PJB feature a small 4mm diameter central jet from which a high velocity lean-premixed methane-air mixture issues. Surrounding the central jet in the PPJB is a 23.5mm diameter pilot of stoichiometric methane-air products, the major difference between the PPJB and the PJB is that the PJB does not feature a stoichiometric pilot. The pilot in the PPJB provides a rich source of combustion intermediates and enthalpy which promotes initial ignition of the central jet mixture. Surrounding both the central jet and pilot is a large diameter hot coflow of combustion products. It is possible to set the temperature of the hot coflow to the adiabatic flame temperature of the central jet mixture to simulate straining and mixing against and with combustion products without introducing complexities such as quenching and dilution from cold air. By parametrically increasing the central jet velocity in the PPJB it is possible to show that there is a transition from a thin conical flame brush to a flame that exhibits extinction and re-ignition effects. The flames that exhibit extinction and re-ignition effects have a luminous region near the jet exit termed the initial ignition region. This is followed by a region of reduced luminosity further downstream termed the extinction region. Further downstream the flame luminosity increases this region is termed the re-ignition region. For the flames that exhibit extinction and re-ignition it is proposed that intense turbulent mixing and high scalar dissipation rates drives the initial extinction process after the influence of the pilot has ceased (x/D>10). Re-ignition is proposed to occur downstream where turbulent mixing and scalar dissipation rates have decreased allowing robust combustion to continue. As the PJB does not feature a pilot, the flame stabilisation structure is quite different to the PPJB. The flame structure in the PJB is essentially a lifted purely premixed flame, which is an experimental configuration that is also quite unique. A suite of laser diagnostic measurements has been parametrically applied to flames in the PPJB and PJB. Laser Doppler Velocimetry (LDV) has been utilised to measure the mean and fluctuating radial and axial components of velocity at a point, with relevant time and length scale information being extracted from these measurements. One of the most interesting results from the LDV measurements is that in the PPJB the pilot delays the generation of high turbulence intensities, for flames that exhibit extinction the rapid increase of turbulence intensity after the pilot corresponds to the start of the extinction region. Using the LDV derived turbulence characteristics and laminar flame properties and plotting these flames on a traditional turbulent regime diagram indicates that all of the flames examined should fall in the so call distributed reaction regime. Planar imaging experiments have been conducted for flames using the PPJB and PJB to investigate the spatial structure of the temperature and selected minor species fields. Results from two different simultaneous 2D Rayleigh and OH PLIF experiments and a simultaneous 2D Rayleigh, OH PLIF and CH2O PLIF experiment are reported. For all of the flames examined in the PPJB and PJB a general trend of decreasing conditional mean temperature gradient with increasing turbulence intensity is observed. This indicates that a trend of so called flame front thickening with increased turbulence levels occurs for the flames examined. It is proposed that the mechanism for this flame front thickening is due to eddies penetrating and embedding in the instantaneous flame front. In the extinction region it is found that the OH concentration is significantly reduced compared to the initial ignition region. In the re-ignition region it is found that the OH level increases again indicating that an increase in the local reaction rate is occurring. In laminar premixed flames CH2O occurs in a thin layer in the reaction zone, it is found for all of the flames examined that the CH2O layer is significantly thicker than the laminar flame. For the high velocity flames beyond x/D=15, CH2O no longer exist in a distinct layer but rather in a near uniform field for the intermediate temperature regions. Examination of the product of CH2O and OH reveals that the heat release in the initial ignition region is high and rapidly decreases in the extinction region, an increase in the heat release further downstream is observed corresponding to the re-ignition region. This finding corresponds well with the initial hypothesis of an extinction region followed by a re-ignition region that was based on the mean chemiluminescence images. Detailed simultaneous measurement of major and minor species has been conducted using the line Raman-Rayleigh-LIF technique with CO LIF and crossed plane-OH PLIF at Sandia National Laboratories. By measuring all major species it is also possible to define a mixture fraction for all three streams of the PPJB. Using these three mixture fractions it was found that the influence of the pilot in the PPJB decays very rapidly for all but the lowest velocity flames. It was also found that for the high velocity flames exhibiting extinction, a significant proportion of the coflow fluid is entrained into the central jet combustion process at both the extinction region and re-ignition regions. The product of CO and OH conditional on temperature is shown to be proportion to the net production rate of CO2 for certain temperature ranges. By examining the product of CO and OH the hypothesis of an initial ignition region followed by an extinction region then a re-ignition region for certain PPJB flames has been further validated complementing the [CH2O][OH] imaging results. Numerical modelling results using the transported composition probability density function (TPDF) method coupled to a conventional Reynolds averaged Naiver Stokes (RANS) solver are shown in this thesis to successfully predict the occurrence of finite-rate chemistry effects for the PM1 PPJB flame series. To calculate the scalar variance and the degree of finite-rate chemistry effects correctly, it is found that a value of the mixing constant ( ) of approximately 8.0 is required. This value of is much larger than the standard excepted range of 1.5-2.3 for that has been established for non-premixed combustion. By examining the results of the RANS turbulence model in a non-reacting variable density jet, it is shown that the primary limitation of the predictive capability of the TPDF-RANS method is the RANS turbulence model when applied to variable density flows.
223

Computational Optimization of Scramjets and Shock Tunnel Nozzles

Craddock, Christopher S. Unknown Date (has links)
The design of supersonic flow paths for scramjet engines and high Mach number shock tunnel nozzles is complicated by high temperature flow effects and multidimensional inviscid/ viscous flow interactions. Due to these complications, design in the past has been enabled by making flow modelling simplifications that detract from the accuracy of the flow analysis. A relatively new approach to designing aerodynamic bodies, which automates design and does not require as many simplifying assumptions to be effective, is the coupling of a computational flow solver to an optimization algorithm. In this study, a new three-dimensional space-marching computational flow solver is developed and coupled to a gradient-search optimization algorithm. This new design tool is then used for the design optimization of an axisymmetric scramjet flow path and two high Mach number shock tunnel nozzles. The flow solver used in the design tool is an explicit, upwind, space-marching, finite-volume solver for integrating the three-dimensional parabolized Navier-Stokes equations. It is developed with an emphasis on simplicity and efficiency. Cross-stream fluxes are calculated using Toro's efficient upwind, linearized, approximate Riemann solver in flow regions of slowly varying data, and an Osher type solver in the remainder of the flow. Vigneron's technique of splitting the streamwise pressure gradient in subsonic regions is used to stabilise the flux calculations. A three-dimensional implementation of an algebraic turbulence model, a finite-rate chemistry model and a thermodynamic equilibrium model are also implemented within the solver. A range of test cases is performed to (1) validate and verify the phenomenological models implemented within the solver, thereby ensuring the simulation results used for design are credible, and (2) demonstrate the speed of the solver. The first application of the new computational design tool is the design of a scramjet flow path, which is optimized for maximum axial thrust at a flight Mach number of 12. The optimization of a scramjet flow path has been examined previously, however, this study differs to others published in that the flow is modelled using a turbulence model and a finite-rate chemical reaction model which add to the fidelity of the simulations. The external shape of the scramjet vehicle is constrained early on in the design process, therefore, the design of the scramjet is restricted to the internal flow path. Because of this constraint, and the large internal surface area of the combustor and the high skin friction iv within the combustor, the net calculated force exerted on the scramjet for both the initial and optimized design is a drag force. The drag force of the initial design, however, is reduced by 60% through optimization. The second application of the design tool is the wall contour of an axisymmetric Mach 7 shock tunnel nozzle, which is computationally optimized for minimum test core flow variation to a level of +/- 0.019 degrees for the flow angularity and +/- 0.26% for the Pitot pressure. The design is verified by constructing a nozzle with the optimized wall contour and conducting experimental Pitot surveys of the nozzle exit flow. The measured standard deviation in core flow Pitot pressure is 1.6%. However, because there is a large amount of experimental noise, it is expected that the actual core flow uniformity may be better than indicated by the raw experimental data. The last application of the computational design tool is a contoured Mach 7 square cross-section shock tunnel nozzle. This is a three-dimensional optimization problem that demonstrates the versatility of the design tool, since the effort required to implement the optimization algorithm is independent of the complexity of the flow-field and flow solver. Optimization results show that the variation in the test core flow properties could only be reduced to a Mach number variation of +/- 7% and flow angle variation of +/- 1.2 degrees ,for a short nozzle suitable for a shock tunnel. The magnitudes of the optimized nozzle exit flow deviations for the short nozzle and two other longer nozzles indicate that generating uniform flow becomes increasingly difficult as the length of square cross-section nozzles is reduced. Overall, the current research shows that coupling a flow solver to an optimization algorithm is an effective and insightful way of designing scramjets and shock tunnel nozzles.
224

CFD simulation of transport and reaction in cylindrical catalyst particles

Taskin, Ertan M. January 2007 (has links)
Dissertation (Ph.D.) -- Worcester Polytechnic Institute. / Keywords: steam reforming; reactor modeling; packed bed; fixed bed; CFD. Includes bibliographical references (p.).
225

Modeling three reacting flow systems with modern computational fluid dynamics /

Price, Ralph J., January 2007 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Chemical Engineering, 2007. / Includes bibliographical references (p. 163-169).
226

CFD as applied to the design of short takeoff and landing vehicles using circulation control a thesis /

Ball, Tyler Matthew. Marshall, David D., January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2008. / Mode of access: Internet. Title from PDF title page; viewed on March 17, 2009. Major professor: David D. Marshall. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering." "June 2008." Includes bibliographical references (p. 126-127). Also available on microfiche.
227

A novel lattice Boltzmann method for treatment of multicomponent convection, diffusion, and reaction phenomena in multiphase systems /

Parker, James Muirhead. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 220-225). Also available on the World Wide Web.
228

Serial and parallel dynamic adaptation of general hybrid meshes

Kavouklis, Christos. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
229

Experimental investigation of hospital operating room air distribution

Stevenson, Tyler C. January 2008 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Jeter, Sheldon; Committee Member: Ghiaasiaan, S. Mostafa; Committee Member: Joshi, Yogendra.
230

A computational evaluation of flow through porous media /

Molale, Dimpho Millicent. January 2007 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.

Page generated in 0.1246 seconds