• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of blood flow in normal and dilated aorta

Deep, Debanjan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Atherosclerotic lesions of human beings are common diagnosed in regions of arte- rial branching and curvature. The prevalence of atherosclerosis is usually associated with hardening and ballooning of aortic wall surfaces because of narrowing of flow path by the deposition of fatty materials, platelets and influx of plasma through in- timal wall of Aorta. High Wall Shear Stress (WSS) is proved to be the main cause behind all these aortic diseases by physicians and researchers. Due to the fact that the atherosclerotic regions are associated with complex blood flow patterns, it has believed that hemodynamics and fluid-structure interaction play important roles in regulating atherogenesis. As one of the most complex flow situations found in cardio- vascular system due to the strong curvature effects, irregular geometry, tapering and branching, and twisting, theoretical prediction and in vivo quantitative experimental data regarding to the complex blood flow dynamics are substantial paucity. In recent years, computational fluid dynamics (CFD) has emerged as a popular research tool to study the characteristics of aortic flow and aim to enhance the understanding of the underlying physics behind arteriosclerosis. In this research, we study the hemo- dynamics and flow-vessel interaction in patient specific normal (healthy) and dilated (diseased) aortas using Ansys-Fluent and Ansys-Workbench. The computation con- sists of three parts: segmentation of arterial geometry for the CFD simulation from computed tomography (CT) scanning data using MIMICS; finite volume simulation of hemodynamics of steady and pulsatile flow using Ansys-Fluent; an attempt to perform the Fluid Structure Simulation of the normal aorta using Ansys-Workbench. Instead of neglecting the branching or smoothing out the wall for simplification as a lot of similar computation in literature, we use the exact aortic geometry. Segmen- tation from real time CT images from two patients, one young and another old to represent healthy and diseased aorta respectively, is on MIMICS. The MIMICS seg- mentation operation includes: first cropping the required part of aorta from CT dicom data of the whole chest, masking of the aorta from coronal, axial and saggital views of the same to extract the exact 3D geometry of the aorta. Next step was to perform surface improvement using MIMICS 3-matic module to repair for holes, noise shells and overlapping triangles to create a good quality surface of the geometry. A hexahe- dral volume mesh was created in T-Grid. Since T-grid cannot recognize the geometry format created by MIMICS 3-matic; the required step geometry file was created in Pro-Engineer. After the meshing operation is performed, the mesh is exported to Ansys Fluent to perform the required fluid simulation imposing adequate boundary conditions accordingly. Two types of study are performed for hemodynamics. First is a steady flow driven by specified parabolic velocity at inlet. We captured the flow feature such as skewness of velocity around the aortic arch regions and vortices pairs, which are in good agreement with open data in literature. Second is a pulsatile flow. Two pulsatile velocity profiles are imposed at the inlet of healthy and diseased aorta respectively. The pulsatile analysis was accomplished for peak systolic, mid systolic and diastolic phase of the entire cardiac cycle. During peak systole and mid-systole, high WSS was found at the aortic branch roots and arch regions and diastole resulted in flow reversals and low WSS values due to small aortic inflow. In brief, areas of sudden geometry change, i.e. the branch roots and irregular surfaces of the geom- etry experience more WSS. Also it was found that dilated aorta has more sporadic nature of WSS in different regions than normal aorta which displays a more uniform WSS distribution all over the aorta surface. Fluid-Structure Interaction simulation is performed on Ansys-WorkBench through the coupling of fluid dynamics and solid mechanics. Focus is on the maximum displacement and equivalent stress to find out the future failure regions for the peak velocity of the cardiac cycle.
2

Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine

Fitzpatrick, John Nathan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.

Page generated in 0.143 seconds