Spelling suggestions: "subject:"computational grids"" "subject:"eomputational grids""
31 |
Application resource requirement estimation in a parallel-pipeline model of execution on a computational grid /Kuntraruk, Jirada, January 2003 (has links)
Thesis (Ph. D.)--Lehigh University, 2004. / Includes vita. Includes bibliographical references (leaves 112-122).
|
32 |
Utility driven grid scheduling frameworkAfgan, Enis. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed Sept. 1, 2009). Additional advisors: Brandon Eames, Elliot Lefkowitz, Anthony Skjellum, Alan Sprague. Includes bibliographical references (p. 228-245).
|
33 |
Master/worker parallel discrete event simulationPark, Alfred John. January 2008 (has links)
Thesis (M. S.)--Computing, Georgia Institute of Technology, 2009. / Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richard.
|
34 |
Grid-enabled software conferencing for the SIP-RTI runtime infrastructure /Ren, Jin Kai. January 1900 (has links)
Thesis (M.C.S.) - Carleton University, 2007. / Includes bibliographical references (p. 74-77). Also available in electronic format on the Internet.
|
35 |
Improving scalability and accuracy of text mining in grid environment /Zhai, Yuzheng. January 2009 (has links)
Thesis (MEngSc)--University of Melbourne, Faculty of Engineering, 2010. / Typescript. Includes bibliographical references (p. 70-74)
|
36 |
Accelerated ray traced animations exploiting temporal coherence /Baines, Darwin Tarry, January 2005 (has links)
Thesis (M.S.)--Brigham Young University. Dept. of Computer Science, 2005. / Includes bibliographical references (p. 59-60).
|
37 |
Self-organization and content location for data sharing peer-to-peer systemsCai, Hailong. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2006. / Title from title screen (site viewed on January 23, 2007). PDF text: viii, 137 p. : ill. ; 0.85Mb. UMI publication number: AAT 3215322. Includes bibliographical references. Also available in microfilm and microfiche format.
|
38 |
Dynamic load balancing of many-body molecular dynamics simulations in grid environmentsJannyavula Venkata, Sumanth. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2007. / Title from title screen (site viewed Oct. 10, 2007). PDF text: 135 p. : ill. (some col.) UMI publication number: AAT 3258771. Includes bibliographical references. Also available in microfilm and microfiche formats.
|
39 |
Εφαρμογή στο πλέγμα με υπηρεσίες ιστούΝικολέντζος, Ιωάννης 04 October 2011 (has links)
Η λύση και η βελτιστοποίηση πραγματικών προβλημάτων, δηλαδή προβλημάτων τα οποία συναντάμε στην καθημερινή μας ζωή είναι συχνά περίπλοκη και παρουσιάζει πολλές δυσκολίες, η μοντελοποίησή τους εξελίσσεται συνεχώς σε θέματα περιορισμών και στόχων και η ανάλυσή τους απαιτεί πολύ χρόνο και επεξεργαστική ισχύ. Υπάρχουν διάφοροι αλγόριθμοι και μέθοδοι που επιδιώκουν την επίλυση τέτοιων προβλημάτων. Στην κατηγορία αυτή ανήκουν και οι μεταευρετικές μέθοδοι (metaheuristics) οι οποίες επιτρέπουν την αντιμετώπιση προβλημάτων μεγάλου μεγέθους παραδίδοντας ικανοποιητικές λύσεις σε λογικό χρόνο. Ωστόσο, παρά τη μείωση της πολυπλοκότητας που επιτρέπουν οι μεταευρετικές μέθοδοι, συχνά δεν είναι επαρκείς για την αντιμετώπιση μεγάλων προβλημάτων. Ο υπολογισμός πλέγματος (Grid computing), ο οποίος έχει έρθει πρόσφατα στο προσκήνιο, παρέχει σημαντική βοήθεια στην επίλυση δύσκολων, με σκληρές απαιτήσεις χρόνου προβλημάτων. Στην παρούσα διπλωματική χρησιμοποιούμε μεταευρετικές μεθόδους σε υπολογιστικά πλέγματα για την επίλυση ενός σύνθετου προβλήματος χρονοπρογραμματισμού εξετάσεων Πανεπιστημίου, το οποίο δημοσιεύτηκε από τον Διεθνή Διαγωνισμό Χρονοπρογραμματισμού το 2007. / -
|
40 |
Group-based parallel multi-scheduling methods for grid computingAbraham, G. T. January 2016 (has links)
With the advent in multicore computers, the scheduling of Grid jobs can be made more effective if scaled to fully utilize the underlying hardware and parallelized to benefit from the exploitation of multicores. The fact that sequential algorithms do not scale with multicore systems nor benefit from parallelism remains a major challenge to scheduling in the Grid. As multicore systems become ever more pervasive in our computing lives, over reliance on such systems for passive parallelism does not offer the best option in harnessing the benefits of their multiprocessors for Grid scheduling. An explicit means of exploiting parallelism for Grid scheduling is required. The Group-based Parallel Multi-scheduler for Grid introduced in this work is aimed at effectively exploiting the benefits of multicore systems for Grid job scheduling by splitting jobs and machines into paired groups and independently multi-scheduling jobs in parallel from the groups. The Priority method splits jobs into four priority groups based on job attributes and uses two methods (SimTog and EvenDist) methods to group machines. Then the scheduling is carried out using the MinMin algorithm within the discrete group pairs. The Priority method was implemented and compared with the MinMin scheduling algorithm without grouping (named ordinary MinMin in this research). The analysis of results compared against the ordinary MinMin shows substantial improvement in speedup and gains in scheduling efficiency. In addition, the Execution Time Balanced (ETB) and Execution Time Sorted then Balanced (ETSB) methods were also implemented to group jobs in order to improve on some deficiencies found with the Priority method. The two methods used the same machine grouping methods as used with the Priority method, but were able to vary the number of groups and equally exploited different means of grouping jobs to ensure equitability of jobs in groups. The MinMin Grid scheduling algorithm was then executed independently within the discrete group pairs. Results and analysis shows that the ETB and ETSB methods gain still further improvement over MinMin compared to the Priority method. The conclusion is reached that grouping jobs and machines before scheduling improves the scheduling efficiency significantly.
|
Page generated in 0.1193 seconds