Spelling suggestions: "subject:"computed aided diagnosis (CAD)"" "subject:"oomputed aided diagnosis (CAD)""
1 |
Mineração de imagens médicas utilizando características de forma / Medical image supported by shape featuresCosta, Alceu Ferraz 10 April 2012 (has links)
Bases de imagens armazenadas em sistemas computacionais da área médica correspondem a uma valiosa fonte de conhecimento. Assim, a mineração de imagens pode ser aplicada para extrair conhecimento destas bases com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Sistemas CAD apoiados por mineração de imagens tipicamente realizam a extração de características visuais relevantes das imagens. Essas características são organizadas na forma de vetores de características que representam as imagens e são utilizados como entrada para classificadores. Devido ao problema conhecido como lacuna semântica, que corresponde à diferença entre a percepção da imagem pelo especialista médico e suas características automaticamente extraídas, um aspecto desafiador do CAD é a obtenção de um conjunto de características que seja capaz de representar de maneira sucinta e eficiente o conteúdo visual de imagens médicas. Foi desenvolvido neste trabalho o extrator de características FFS (Fast Fractal Stack) que realiza a extração de características de forma, que é um atributo visual que aproxima a semântica esperada pelo ser humano. Adicionalmente, foi desenvolvido o algoritmo de classificação Concept, que emprega mineração de regras de associação para predizer a classe de uma imagem. O aspecto inovador do Concept refere-se ao algoritmo de obtenção de representações de imagens, denominado MFS-Map (Multi Feature Space Map) e também desenvolvido neste trabalho. O MFS-Map realiza agrupamento de dados em diferentes espaços de características para melhor aproveitar as características extraídas no processo de classificação. Os experimentos realizados para imagens de tomografia pulmonar e mamografias indicam que tanto o FFS como a abordagem de representação adotada pelo Concept podem contribuir para o aprimoramento de sistemas CAD / Medical image databases represent a valuable source of data from which potential knowledge can be extracted. Image mining can be applied to knowledge discover from these data in order to help CAD (Computer Aided Diagnosis) systems. The typical set-up of a CAD system consists in the extraction of relevant visual features in the form of image feature vectors that are used as input to a classifier. Due to the semantic gap problem, which corresponds to the difference between the humans image perception and the features automatically extracted from the image, a challenging aspect of CAD is to obtain a set of features that is able to succinctly and efficiently represent the visual contents of medical images. To deal with this problem it was developed in this work a new feature extraction method entitled Fast Fractal Stack (FFS). FFS extracts shape features from objects and structures, which is a visual attribute that approximates the semantics expected by humans. Additionally, it was developed the Concept classification method, which employs association rules mining to the task of image class prediction. The innovative aspect of Concept refers to its image representation algorithm termed MFS-Map (Multi Feature Space Map). MFS-Map employs clustering in different feature spaces to maximize features usefulness in the classification process. Experiments performed employing computed tomography and mammography images indicate that both FFS and Concept methods for image representation can contribute to the improvement of CAD systems
|
2 |
Mineração de imagens médicas utilizando características de forma / Medical image supported by shape featuresAlceu Ferraz Costa 10 April 2012 (has links)
Bases de imagens armazenadas em sistemas computacionais da área médica correspondem a uma valiosa fonte de conhecimento. Assim, a mineração de imagens pode ser aplicada para extrair conhecimento destas bases com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Sistemas CAD apoiados por mineração de imagens tipicamente realizam a extração de características visuais relevantes das imagens. Essas características são organizadas na forma de vetores de características que representam as imagens e são utilizados como entrada para classificadores. Devido ao problema conhecido como lacuna semântica, que corresponde à diferença entre a percepção da imagem pelo especialista médico e suas características automaticamente extraídas, um aspecto desafiador do CAD é a obtenção de um conjunto de características que seja capaz de representar de maneira sucinta e eficiente o conteúdo visual de imagens médicas. Foi desenvolvido neste trabalho o extrator de características FFS (Fast Fractal Stack) que realiza a extração de características de forma, que é um atributo visual que aproxima a semântica esperada pelo ser humano. Adicionalmente, foi desenvolvido o algoritmo de classificação Concept, que emprega mineração de regras de associação para predizer a classe de uma imagem. O aspecto inovador do Concept refere-se ao algoritmo de obtenção de representações de imagens, denominado MFS-Map (Multi Feature Space Map) e também desenvolvido neste trabalho. O MFS-Map realiza agrupamento de dados em diferentes espaços de características para melhor aproveitar as características extraídas no processo de classificação. Os experimentos realizados para imagens de tomografia pulmonar e mamografias indicam que tanto o FFS como a abordagem de representação adotada pelo Concept podem contribuir para o aprimoramento de sistemas CAD / Medical image databases represent a valuable source of data from which potential knowledge can be extracted. Image mining can be applied to knowledge discover from these data in order to help CAD (Computer Aided Diagnosis) systems. The typical set-up of a CAD system consists in the extraction of relevant visual features in the form of image feature vectors that are used as input to a classifier. Due to the semantic gap problem, which corresponds to the difference between the humans image perception and the features automatically extracted from the image, a challenging aspect of CAD is to obtain a set of features that is able to succinctly and efficiently represent the visual contents of medical images. To deal with this problem it was developed in this work a new feature extraction method entitled Fast Fractal Stack (FFS). FFS extracts shape features from objects and structures, which is a visual attribute that approximates the semantics expected by humans. Additionally, it was developed the Concept classification method, which employs association rules mining to the task of image class prediction. The innovative aspect of Concept refers to its image representation algorithm termed MFS-Map (Multi Feature Space Map). MFS-Map employs clustering in different feature spaces to maximize features usefulness in the classification process. Experiments performed employing computed tomography and mammography images indicate that both FFS and Concept methods for image representation can contribute to the improvement of CAD systems
|
Page generated in 0.0578 seconds