• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 38
  • 33
  • 16
  • 13
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 349
  • 349
  • 227
  • 96
  • 79
  • 65
  • 61
  • 61
  • 54
  • 52
  • 49
  • 38
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Faces, Locations, and Tools: A Proposed Two-Stimulus p300 Brain Computer Interface

Jones, M. R., Sellers, E. W. 01 January 2019 (has links)
Objective. Brain computer interface (BCI) technology can be important for those unable to communicate due to loss of muscle control. Given that the P300 Speller provides a relatively slow rate of communication, highly accurate classification is of great importance. Previous studies have shown that alternative stimuli (e.g. faces) can improve BCI speed and accuracy. The present study uses two new alternative stimuli, locations and graspable tools. Functional MRI studies have shown that images of familiar locations produce brain responses in the parahippocampal place area and graspable tools produce brain responses in premotor cortex. Approach. The current studies show that location and tool stimuli produce unique and discriminable brain responses that can be used to improve offline classification accuracy. Experiment 1 presented face stimuli and location stimuli and Experiment 2 presented location and tool stimuli. Main results. In both experiments, offline results showed that a stimulus specific classifier provided higher accuracy, speed, and bit rate. Significance. This study was used to provide preliminary offline support for using unique stimuli to improve speed and accuracy of the P300 Speller. Additional experiments should be conducted to examine the online efficacy of this novel paradigm.
142

Applying Dynamic Data Collection to Improve Dry Electrode System Performance for a P300-Based Brain-Computer Interface

Clements, J. M., Sellers, E. W., Ryan, D. B., Caves, K., Collins, L. M., Throckmorton, C. S. 07 November 2016 (has links)
Objective. Dry electrodes have an advantage over gel-based 'wet' electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.
143

The Effects of Working Memory on Brain-Computer Interface Performance

Sprague, Samantha A., McBee, Matthew T., Sellers, Eric W. 01 February 2016 (has links)
Objective: The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Methods: Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. Results: The results indicate that both working memory and general intelligence are significant predictors of BCI performance. Conclusions: This suggests that working memory training could be used to improve performance on a BCI task. Significance: Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users.
144

Moving Away From Error-Related Potentials to Achieve Spelling Correction in P300 Spellers

Mainsah, Boyla O., Morton, Kenneth D., Collins, Leslie M., Sellers, Eric W., Throckmorton, Chandra S. 01 September 2015 (has links)
P300 spellers can provide a means of communication for individuals with severe neuromuscular limitations. However, its use as an effective communication tool is reliant on high P300 classification accuracies (>70‰) to account for error revisions. Error-related potentials (ErrP), which are changes in EEG potentials when a person is aware of or perceives erroneous behavior or feedback, have been proposed as inputs to drive corrective mechanisms that veto erroneous actions by BCI systems. The goal of this study is to demonstrate that training an additional ErrP classifier for a P300 speller is not necessary, as we hypothesize that error information is encoded in the P300 classifier responses used for character selection. We perform offline simulations of P300 spelling to compare ErrP and non-ErrP based corrective algorithms. A simple dictionary correction based on string matching and word frequency significantly improved accuracy (35-185%), in contrast to an ErrP-based method that flagged, deleted and replaced erroneous characters (-47-0‰). Providing additional information about the likelihood of characters to a dictionary-based correction further improves accuracy. Our Bayesian dictionary-based correction algorithm that utilizes P300 classifier confidences performed comparably (44-416%) to an oracle ErrP dictionary-based method that assumed perfect ErrP classification (43-433%).
145

Clinical Evaluation of BCIs

Vaughan, Theresa M., Sellers, Eric W., Wolpaw, Jonathan R. 24 May 2012 (has links)
This chapter addresses the following questions: Can the brain-computer interface (BCI) design be implemented in a form suitable for long-term independent use? Who are the people who need the BCI system, and can they use it? Can their home environments support their use of the BCI, and do they actually use it? Does the BCI improve their lives? It considers the steps involved in answering each of these questions and the potential problems that must be overcome. Since the present peer-reviewed literature lacks any formal multisubject studies that address these questions, the discussion relies heavily on personal experience to date, which is primarily with a noninvasive EEG P300-based BCI system. The chapter's overall intent is to provide information and insight that would apply to any effort to take any BCI system out of the lab and validate its effectiveness in the everyday lives of people with disabilities.
146

Targeting an Efficient Target-to-Target Interval for P300 Speller Brain-Computer Interfaces

Jin, Jing, Sellers, Eric W., Wang, Xingyu 01 March 2012 (has links)
Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain-computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects.
147

A General P300 Brain-Computer Interface Presentation Paradigm Based on Performance Guided Constraints

Townsend, George, Shanahan, Jessica, Ryan, David B., Sellers, Eric W. 07 December 2012 (has links)
An electroencephalographic-based brain-computer interface (BCI) can provide a non-muscular method of communication. A general model for P300-based BCI stimulus presentations is introduced - the "m choose n" or C(m (number of flashes per sequence), n (number of flashes per item)) paradigm, which is a universal extension of the previously reported checkerboard paradigm (CBP). C(m,n) captures all possible (unconstrained) ways to flash target items, and then applies constraints to enhance ERP's produced by attended matrix items. We explore a C(36,5) instance of C(m,n) called the "five flash paradigm" (FFP) and compare its performance to the CBP. Eight subjects were tested in each paradigm, counter-balanced. Twelve minutes of calibration data were used as input to a stepwise linear discriminant analysis to derive classification coefficients used for online classification. Accuracy was consistently high for FFP (88%) and CBP (90%); information transfer rate was significantly higher for the FFP (63 bpm) than the CBP (48 bpm). The C(m,n) is a novel and effective general strategy for organizing stimulus groups. Appropriate choices for "m," "n," and specific constraints can improve presentation paradigms by adjusting the parameters in a subject specific manner. This may be especially important for people with neuromuscular disabilities.
148

Optimized Stimulus Presentation Patterns for an Event-Related Potential EEG-Based Brain-Computer Interface

Jin, Jing, Allison, Brendan Z., Sellers, Eric W., Brunner, Clemens, Horki, Petar, Wang, Xingyu, Neuper, Christa 01 February 2011 (has links)
P300 brain-computer interface (BCI) systems typically use a row/column (RC) approach. This article presents a P300 BCI based on a 12 × 7 matrix and new paradigmatic approaches to flashing characters designed to decrease the number of flashes needed to identify a target character. Using an RC presentation, a 12 × 7 matrix requires 19 flashes to present all items twice (12 columns and seven rows) per trial. A 12 × 7 matrix contains 84 elements (characters). To identify a target character in 12 × 7 matrix using the RC pattern, 19 flashes (sub-trials) are necessary. In each flash, the selected characters (one column or one row in the RC pattern) are flashing. We present four new paradigms and compare the performance to the RC paradigm. These paradigms present quasi-random groups of characters using 9, 12, 14 and 16 flashes per trial to identify a target character. The 12-, 14- and 16-flash patterns were optimized so that the same character never flashed twice in succession. We assessed the practical bit rate and classification accuracy of the 9-, 12-, 14-, 16- and RC (19-flash) pattern conditions in an online experiment and with offline simulations. The results indicate that 16-flash pattern is better than other patterns and performance of an online P300 BCI can be significantly improved by selecting the best presentation paradigm for each subject.
149

A Longitudinal Study of p300 Brain-Computer Interface and Progression of Amyotrophic Lateral Sclerosis

Gates, Nathan A., Hauser, Christopher K., Sellers, Eric W. 19 July 2011 (has links)
BCI can provide communication for people locked in by amyotrophic lateral sclerosis (ALS). Empirical examination of how disease progression affects brain-computer interface (BCI) performance has not been investigated. This pilot study uses a longitudinal design to investigate changes in P300-BCI use as ALS disability increases. We aimed to (a) examine the relationship between BCI accuracy and the ALS/Functional Rating Scale and (b) examine changes in the event-related potential (ERP) components across time. Eight subjects have been enrolled in the study. BCI accuracy was measured and ERP components were assessed by a principal component analysis (PCA). Two subjects have been followed for an average of nine-months, and BCI accuracy is 99.6%. While many research obstacles remain, these preliminary data help elucidate the relationship between BCI performance and disease progression.
150

A Brain-Computer Interface for Long-Term Independent Home Use

Sellers, Eric W., Vaughan, Theresa M., Wolpaw, Jonathan R. 01 October 2010 (has links)
Our objective was to develop and validate a new brain-computer interface (BCI) system suitable for long-term independent home use by people with severe motor disabilities. The BCI was used by a 51-year-old male with ALS who could no longer use conventional assistive devices. Caregivers learned to place the electrode cap, add electrode gel, and turn on the BCI. After calibration, the system allowed the user to communicate via EEG. Re-calibration was performed remotely (via the internet), and BCI accuracy assessed in periodic tests. Reports of BCI usefulness by the user and the family were also recorded. Results showed that BCI accuracy remained at 83% (r -.07, n.s.) for over 2.5 years (1.4% expected by chance). The BCI user and his family state that the BCI had restored his independence in social interactions and at work. He uses the BCI to run his NIH-funded research laboratory and to communicate via e-mail with family, friends, and colleagues. In addition to this first user, several other similarly disabled people are now using the BCI in their daily lives. In conclusion, long-term independent home use of this BCI system is practical for severely disabled people, and can contribute significantly to quality of life and productivity.

Page generated in 0.0586 seconds