• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer Model Emulation and Calibration using Deep Learning

Bhatnagar, Saumya January 2022 (has links)
No description available.
2

PVactVal: A Validation Approach for Agent-based Modeling of Residential Photovoltaic Adoption

Johanning, Simon, Abitz, Daniel, Schulte, Emily, Scheller, Fabian, Bruckner, Thomas 19 October 2023 (has links)
Agent-based simulation models are an important tool to study the effectiveness of policy interventions on the uptake of residential photovoltaic systems by households, a cornerstone of sustainable energy system transition. In order for these models to be trustworthy, they require rigorous validation. However, the canonical approach of validating emulation models through calibration with parameters that minimize the difference of model results and reference data fails when the model is subject to many stochastic influences. The residential photovoltaic diffusion model PVact features numerous stochastic influences that prevent straightforward optimization-driven calibration. From the analysis of the results of a case-study on the cities Dresden and Leipzig (Germany) based on three error metrics (mean average error, root mean square error and cumulative average error), this research identifies a parameter range where stochastic fluctuations exceed differences between results of different parameterization and a minimization-based calibration approach fails. Based on this observation, an approach is developed that aggregates model behavior across multiple simulation runs and parameter combinations to compare results between scenarios representing different future developments or policy interventions of interest.

Page generated in 0.8339 seconds