Spelling suggestions: "subject:"concealed weapon detection"" "subject:"concealed weapon 1detection""
1 |
Detection of concealed weapons using acoustic wavesVadakkel, George Abraham January 2013 (has links)
Existing weapon detection systems such as metal detectors and X-ray baggage scanners have many drawbacks. While metal detectors can only detect metallic objects, X-ray scanners are unsafe for use on passengers. Also, these systems can only scan people within a short range. These limitations of detecting potentially harmful objects have led to tragic events such as the 9/11 attack on the world trade centre and the 2008 terrorist attack in Mumbai. Development of more advanced security systems would help in curbing such terrorist attacks. These systems could also be used to help security officials in tackling knife and gun related crimes in the streets. The aim of this research is to develop a concealed weapon detection system using acoustic waves. Ideally, the system would have large standoff distance, should be cost-effective and easy to manufacture and would be able to detect both metal and non-metallic weapons. Different techniques such as acoustic signature, resonance acoustic spectroscopy and acoustic imaging were analysed. Acoustic signature techniques identify the target by comparing the acoustic waves reflected by the target to a database of previously recorded acoustic reflections. Resonance acoustic spectroscopy was used on the data acquired using both experimental measurements and Finite Element simulations. A series of resonant frequencies from the acoustic waves reflected by the concealed target were extracted using this technique. This series of resonant frequencies that are unique to the target were used to identify the target. Acoustic camera was used to experimentally record the acoustic reflection from different targets. This was then used to develop images of concealed targets. These tests were performed using commercially available array speaker systems. The probability of improving these results using a better designed ultrasonic or acoustic array speaker system was analysed. This was done by changing different array design parameters and obtaining a highly focused acoustic beam. The results from the experimental tests and Finite Element simulations proved the possibility of using acoustic waves for concealed weapon detection. In the acoustic signature measurements, the frequency spectra of the reflected acoustic waves were shown to be different for different targets. The results from resonance acoustic spectroscopy showed structural resonant frequencies in the frequency spectra that corresponded to the natural frequency of the target. Using acoustic camera kit the image of the concealed target was identified. The array results showed the formation of focused beams for different array configurations. The results showed the formation of grating lobes and side lobes when the inter-element gap became larger than the wavelength of sound waves at the excitation frequency. Finally, a program using neural network was developed to demonstrate how the natural frequencies from the target could be used to identify them. This research work provides a proof of concept of different acoustic wave-based detection and imaging techniques. It has shown the possibility of detecting concealed targets at standoff distances. Using parametric arrays highly focused acoustic or ultrasonic beams could be generated which could be focused on a person suspected of carrying a weapon in a crowded environment. The sound waves reflected back could be analysed using the resonance acoustic spectroscopic technique or one could use the acoustic camera to generate images of targets in real-time. The use of acoustic waves would also help in keeping the cost and complexity of the equipment to a minimum. It also ensures that the public is not exposed to any harmful radiation. The techniques described in this thesis would significantly support the development of a commercially viable, robust acoustic waves based concealed weapon detection system.
|
2 |
Noise Reduction and Clutter Suppression in Microwave Imaging and DetectionMcCombe, Justin J. January 2014 (has links)
Commercial concealed weapon detection systems are large and expensive and are not suitable to be used as a portable system. Currently, new methods of concealed weapon detection are being developed to build small and compact systems. One such method is based upon the natural resonances of objects; however, no such system has made it to the market due to the low quality of the signals used in the detection algorithms.
In this thesis, a prototype concealed weapon detection system is developed and tested for operation in a cluttered environment. This system utilizes the late-time portion of a radar return to extract the resonance information of an unknown target. After proper signal processing and clutter suppression, the signals are classified to determine if the object is a threat. Multiple measurements with frequency-sweep and time-domain systems are used to verify the algorithm.
Microwave tissue imaging techniques aim to reconstruct the internal dielectric distribution of the tissue and rely on the dielectric contrast between healthy and malignant tissues. This contrast has been shown to be weak, and therefore, the signals are easily susceptible to noise.
This thesis proposes and validates a method for signal-to-noise ratio analysis of complex S-parameter data sets that are used for microwave imaging. A study of de-noising and artifact reduction techniques for microwave holographic imaging is also presented. / Thesis / Master of Applied Science (MASc)
|
3 |
An Algorithm for the Detection of Handguns in Terahertz ImagesLingg, Andrew J. January 2008 (has links)
No description available.
|
4 |
A terahertz holography imaging system for concealed weapon detection applicationZhou, Min January 2018 (has links)
Many research groups have conducted the investigation into terahertz technology for various applications over the last decade. THz imaging for security screening has been one of the most important applications because of its superior performance of high resolution and not health hazardous. Due to increasing security requirements, it is desirable to devise a high-speed imaging system with high image quality for concealed weapon detection. Therefore, this thesis presents my research into a low-cost and fast THz imaging system for security application. This research has made a number of contributes to THz imaging, such as proposing the beam scanning imaging approach to reduce the scanning time; developing the simulation method of the scanned imaging system; investigating new reconstruction algorithms; studying the optimal spatial sampling criterion; and verifying the beam scanning scheme in experiment. Firstly, the beam scanning scheme is proposed and evaluated in both simulation and experiment, compared to the widely applied raster scanning scheme. A better mechanic rotation structure is developed to reduce the scanning time consumed and realise a more compact system. Then, a rotary Dragonian multi-reflector antenna subsystem, comprising two rotated reflectors is designed to form a similar synthetic aperture being realised in the raster scanned scheme. Thirdly, the simulation of the THz scanning imaging system is achieved by employing Physical Optics algorithm. The transposed convolution and partial inverse convolution reconstruction algorithms are investigated to speed up the image re-construction. Finally, two THz imaging systems based on the raster and beam scanning schemes are assessed and compared in the experiments. The back-propagation, transposed convolution and partial inverse convolution algorithms are applied in these experiments to reconstruct the images. The proposed beam scanning scheme can be further explored together with antenna arrays to provide a compact, fast and low-cost THz imaging system in the future.
|
Page generated in 0.0982 seconds