Spelling suggestions: "subject:"concentration.discussion"" "subject:"concentrations.mechanic""
1 |
Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and EvolutionChorover, Jon, Derry, Louis A., McDowell, William H. 11 1900 (has links)
Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on concentration-discharge relations in the critical zone include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.
|
2 |
Concentration-discharge behavior of contaminants in a stream impacted by acid mine drainageShaw, Meaghan Elizabeth 25 July 2018 (has links)
No description available.
|
3 |
Modelling the hysteretic patterns of solute concentration-discharge relationships and their significance for hydrological pathways at the farm-scaleEludoyin, Adebayo Oluwole January 2013 (has links)
Recent researches on the effects of environmental degradation on food security suggest that a better understanding of the relationship between agricultural intensification and pollutant transfer is urgently required to support the implementation of sustainable agricultural policies, globally. Poor understanding of the hydrological behaviour of clay-rich soils in intensively managed agricultural regions is highlighted as an important problem. The study therefore evaluated precipitation-soil water chemistry relationships, soil variability and concentration-discharge relationships at the farm-scale based on datasets from the North Wyke Farm Platform between 2011 and 2013. The three main hypothesis were that (1) precipitation and soil water chemistry are significantly related (2) significant relationships exists between the distribution of soil physiochemical characteristics and the managments of the fields, and that (3) hydrological behaviour of fields underlain by certain dominant soils in the study area are different from that of other fields. The basis of this work was to elucidate links between sources of pollutants and water quality, further understanding of the effect that management of the soil may have upon the quality of the water and improve understanding of the pathways of pollutants within intensively managed landscapes. Precipitation chemistry of the study area was chemically different from that of the other regions in the United Kingdom, and was influenced by contributions from sea salts and terrestrial dusts. The soil chemistry was rich in organic matter which contributed significantly (r2>0.60; p<0.05) to the distribution of total carbon and total nitrogen in the fields. Mean total carbon and nitrogen stocks ranged 32.4 - 54.1 t C ha-1, and 4 - 6.2 t Na ha-1, respectively in the entire farm platform while runoff coefficient at four selected fields (Pecketsford, Burrows, Middle and Higher Wyke Moor, and Longlands East) varied between 0.1 and 0.28 in January and November, 2013. The study rejected the first and third hypotheses, and concluded that the study area is largely influenced by contributions from the surface runoff mechanisms. The study also noted that sodium and chloride ions were dominant in the precipitation chemistry, and therefore suggests their further investigation as conservative tracers in the soil and runoff chemistry.
|
4 |
Dissolved Organic Carbon and Dissolved Metal Pulses During Snowmelt Runoff in the Upper Provo River Watershed, Utah, USAChecketts, Hannah Nicole 01 December 2017 (has links)
Snowmelt river systems exhibit seasonal fluxes in water chemistry, potentially affecting the water supply of one-sixth of the worlds population. In this study, we examined water chemistry of the upper Provo River, northern Utah, which supplies water to over two million people along the urban Wasatch Front. Seasonal changes in water chemistry were characterized by analyzing discharge and dissolved organic carbon (DOC) with dissolved trace metal and cation concentrations (La, Pb, Cu, Al, Be, Sr and K) over three consecutive water years 20142016, with intensive sampling during snowmelt runoff. To better understand links between metal movement and DOC, we sampled the river in three locations (Soapstone, Woodland, and Hailstone), snowpack, and ephemeral snowmelt channels. Concentrations of La, Pb, Cu, Al, and Be increased with discharge/snowmelt during the 2014, 2015 and 2016 water years. Over 90% of La, Pb, Cu, Al, Be and between 70-90% Sr and K loads occurred during the snowmelt season (April-June). In relation to discharge, concentrations of each element varied between the river sampling sites. At Soapstone, DOC, La, Pb, Cu, Al and Be increased slightly with discharge, but Sr and K remained chemostatic. At Woodland and Hailstone, DOC, La, Pb, Cu, Al and Be had sharp increases with discharge, and Sr and K were diluted. Hysteresis patterns showed that concentrations of DOC, La, Pb, Cu, Al, Be, Sr and K all peaked on the rising limb of the hydrograph at the higher elevation Soapstone site but patterns were variable at the lower elevation Woodland and Hailstone sites. Concentrations for ephemeral channels were significantly higher than river and snow concentrations in La, Pb, Cu and Al, suggesting soil water was a significant source of flushed metals and DOC to the upper Provo River. DOC was highly correlated with La (R2 = 0.94, P = < .0001), Pb (R2 = 0.76, P = < .0023), Cu (R2 = 0.83, P = < .0001), Al (R2 = 0.94, P = < .0001) and Be (R2 = 0.93, P = < .0005), and likely facilitating metal transport. More work is needed to determine the mechanisms of DOC and metal transport, and potential metal complexation. This study has implications for understanding water quality impacts from metal flushing during snowmelt in mountain watersheds.
|
5 |
Dissolved Organic Carbon and Dissolved Metal Pulses During Snowmelt Runoff in the Upper Provo River Watershed, Utah, USAChecketts, Hannah Nicole 01 December 2017 (has links)
Snowmelt river systems exhibit seasonal fluxes in water chemistry, potentially affecting the water supply of one-sixth of the worlds population. In this study, we examined water chemistry of the upper Provo River, northern Utah, which supplies water to over two million people along the urban Wasatch Front. Seasonal changes in water chemistry were characterized by analyzing discharge and dissolved organic carbon (DOC) with dissolved trace metal and cation concentrations (La, Pb, Cu, Al, Be, Sr and K) over three consecutive water years 2014”2016, with intensive sampling during snowmelt runoff. To better understand links between metal movement and DOC, we sampled the river in three locations (Soapstone, Woodland, and Hailstone), snowpack, and ephemeral snowmelt channels. Concentrations of La, Pb, Cu, Al, and Be increased with discharge/snowmelt during the 2014, 2015 and 2016 water years. Over 90% of La, Pb, Cu, Al, Be and between 70-90% Sr and K loads occurred during the snowmelt season (April-June). In relation to discharge, concentrations of each element varied between the river sampling sites. At Soapstone, DOC, La, Pb, Cu, Al and Be increased slightly with discharge, but Sr and K remained chemostatic. At Woodland and Hailstone, DOC, La, Pb, Cu, Al and Be had sharp increases with discharge, and Sr and K were diluted. Hysteresis patterns showed that concentrations of DOC, La, Pb, Cu, Al, Be, Sr and K all peaked on the rising limb of the hydrograph at the higher elevation Soapstone site but patterns were variable at the lower elevation Woodland and Hailstone sites. Concentrations for ephemeral channels were significantly higher than river and snow concentrations in La, Pb, Cu and Al, suggesting soil water was a significant source of flushed metals and DOC to the upper Provo River. DOC was highly correlated with La (R2 = 0.94, P = <<> .0001), Pb (R2 = 0.76, P = <<> .0023), Cu (R2 = 0.83, P = <<> .0001), Al (R2 = 0.94, P = <<> .0001) and Be (R2 = 0.93, P = <<> .0005), and likely facilitating metal transport. More work is needed to determine the mechanisms of DOC and metal transport, and potential metal complexation. This study has implications for understanding water quality impacts from metal flushing during snowmelt in mountain watersheds.
|
6 |
Physical and Biological Drivers of Wetlandscape BiogeochemistryCorline, Nicholas John 22 May 2024 (has links)
Wetlands play a vital role in regional and global biogeochemistry by controlling the movement and cycling of nutrients and carbon. While individual wetlands may provide these ecosystem services, high density wetland landscapes, referred to as wetlandscapes, can have far reaching aggregate effects on elemental cycling and solute transport. Here we use forested Delmarva bays or wetlands as a study ecosystem to explore physical and biological controls on wetland chemistry within forested wetlandscapes. The Delmarva wetlandscape consists of thousands of geographically isolated wetlands on the Delmarva Peninsula, United States, which despite their proximity to each other have highly variable sizes, shapes, hydrology, vegetative cover, and biological communities. This physical and biological variation makes the Delmarva wetlandscape an ideal ecosystem to understand spatio-temporal heterogeneity and drivers of biogeochemistry. In this dissertation, I demonstrate that water chemistry within the Delmarva wetlandscape is heterogeneous both within and between surface water and groundwater systems (Chapter 2). Surface water chemistry was primarily influenced by temporal factors (season and month), followed by local hydrology. In contrast, groundwater chemistry was strongly influenced by water level below ground surface and interaction with organic soil layers. These results are important in understanding both internal wetlandscape water chemistry dynamics and export of solutes such as dissolved organic matter (DOM) to adjacent river ecosystems. Further, these results suggest that local biological and hydrological factors strongly affect surface water chemistry in wetlands. To explore these factors, I used an observational approach to determine the role of larval amphibians on wetland biogeochemistry (Chapter 3) and employed high-resolution chemistry sensors to study the effect of hydrological changes on surface water dissolved organic matter concentrations (Chapter 4). Animal waste can contribute substantially to nutrient cycling and ecosystem productivity, yet little is known of the biogeochemical impact of animal excretion in wetland habitats. A common and abundant amphibian in Delmarva wetlands are wood frog (Lithobates sylvaticus) tadpoles. I found that wood frog tadpole aggregations elevated nutrient recycling, microbial metabolism, and carbon cycling in Delmarva wetlands. These results provide evidence for the functional and biogeochemical role of tadpole aggregations in wetland habitats, with important implications for ecosystem processes, biodiversity conservation, and ecosystem management. To further explore the role of hydrology on DOM concentrations, I utilized high-resolution fluorescent dissolved organic matter sensors (fDOM) and applied river solute transport frameworks and metrics to wetland catchments. I found that there was heterogeneity in wetland response to changing hydrology and that seasonality and potentially bathymetry influences fDOM concentrations. Together, these studies inform our understanding of wetlandscape heterogeneity and DOM export, as well as biological and hydrological drivers of biogeochemistry. / Doctor of Philosophy / Wetlands control the movement of nutrients and carbon at local, regional, and global scales. There is a large body of knowledge demonstrating the importance of wetlands to the transport of dissolved water constituents, such as dissolved organic matter (DOM) and nutrients. However, there is little information on what controls surface water chemistry in these wetland landscapes and less is known about belowground water chemistry. In this study I examined the role of water level, wetland shape, and time (i.e., year, month of the year, and season) on surface and groundwater chemistry in wetlands. I found that water chemistry was different between surface and groundwater and that differences were primarily due to seasons or months in surface water wetlands, while water level and flooding of organic matter-rich soil layers controlled groundwater chemistry. These results indicate that there are differences in water chemistry between surface water and groundwater that are controlled by unique drivers. These results also suggested that biological processes such as animal presence may influence wetland chemistry. To understand the role of animals in wetland chemistry, I studied the effect of wood frog (Lithobates sylvaticus) tadpole waste on nutrient concentrations in wetlands and found large tadpole groups are significant recyclers of nitrogen and phosphorous, which were used by microbes as nutrients, leading to enhanced leaf litter break-down in wetlands. These findings imply that tadpoles have an important role in wetland ecosystems by creating locations of enhanced nutrient and carbon cycling and that conservation of amphibian species may also preserve ecosystem processes in wetlands. Additionally, my initial study suggested that hydrology influences DOM concentrations in wetlands. I used high-frequency chemistry sensors to detect fluorescent dissolved organic matter (fDOM) concentrations, which represents a fraction of DOM. I found that relationships and patterns in fDOM concentration were complex, and that season and wetland shape were important in wetland DOM dynamics. Overall, this dynamic behavior across seasons and between wetlands indicates that wetland response to water levels can drive differences in water chemistry between wetlands and is important in our understanding of wetland response to storm events. The information gained from these studies is important in understanding how large wetland landscapes function and control movement of nutrients and carbon. Further, my research has uncovered the role of animal species in controlling nutrient and carbon cycling in wetland environments as well as the complex response of fDOM to water level changes in individual wetlands.
|
7 |
Hydrogeochemical Factors Influencing Metal Transport and Transformation in a Stream Impaired by Acid Mine DrainageYazbek, Lindsey Danese 30 July 2019 (has links)
No description available.
|
Page generated in 0.1164 seconds