Spelling suggestions: "subject:"conception dde procédés"" "subject:"conception dde procédé""
1 |
Extraction et modélisation de connaissances : Application à la conception de procédés / Extraction and Modeling of Knowledge : Application in Process DesignRoldan Reyes, Eduardo 23 November 2012 (has links)
L'activité de conception est un processus complexe et décisif dans le cycle de vie des produits et des procédés de fabrication. Dans le contexte actuel, les chercheurs et ingénieurs de conception notent une nette augmentation de la complexité des produits et procédés, pour satisfaire au mieux l’ensemble des exigences croissantes provenant de l’ensemble des acteurs du cycle de vie (industriels et utilisateurs) mais aussi du monde normatif. La gestion des connaissances et de l’expertise métier est un atout important pour rendre plus efficace et accélérer ce processus. Les recherches actuelles sur la gestion des connaissances font émerger des méthodes et outils performants pour identifier, formaliser, exploiter et diffuser la connaissance et les expériences issues de conceptions passées en vue de produire rapidement de nouvelles solutions. Parmi les approches existantes le Raisonnement à Partir de Cas (RàPC) et la Programmation Par Contraintes (PPC) correspondent aux besoins identifiés en Génie des Procédés. A partir de l’analyse de ces deux approches, ce travail propose un couplage du RàPC et de la PPC afin de fournir un cadre méthodologique et un outil logiciel pour une aide à la conception. Le RàPC permet de capitaliser et de remémorer les expériences passées. Toutefois, la modification de la solution passée pour répondre aux exigences du nouveau problème nécessite l’ajout de nouvelles connaissances aussi appelées connaissances d’adaptation. La PPC, quant à elle, offre justement un cadre approprié pour modéliser et gérer la connaissance permettant l’obtention d’une solution à un problème mais aussi ces connaissances d’adaptation. Outre la formalisation des connaissances d’adaptation, une des difficultés réside dans l’acquisition de ces connaissances. Dans l’approche proposée, le cycle traditionnel du RàPC a été modifié de façon à créer une boucle d’interaction avec l’utilisateur. Lorsqu’un échec d’adaptation se produit, cette boucle est activée et l’expert est sollicité pour apporter les modifications nécessaires à l’obtention d’une solution appropriée. Cette correction est l’occasion d’acquérir en ligne cette nouvelle connaissance, qui sera par la suite mise à jour et ajoutée dans le système. Un cas d’étude sur la conception d’une opération unitaire de génie des procédés permet d’illustrer l’approche. / Design is a complex and crucial process within the lifecycle of products and production processes. In the current context, design engineers and researchers notice an increasing in complexity of products and processes, in order to meet all the requirements coming from all the participants(manufacturers and users alike) in the life cycle and in the normative world as well. Knowledge management is an important asset to accelerate this process and improve its efficiency. Current research on knowledge management is producing new methods and tools to identify, formalize, exploit and disseminate knowledge from past designs experiences to produce new solutions rapidly. Among existing approaches, Case-Based Reasoning (CBR) and Constraint Programming (CP) are suited to needs identified in Process Engineering. Based on the analysis of these two approaches, this work proposes a coupling of CBR and the CP to provide a methodological framework and a software tool to assist design. The CBR allows to capitalize and retrieve past experiences. However, transforming the past solution to fit the new problem requirements needs the addition of new knowledge also known as Adaptation Knowledge. CP, meanwhile, offers an appropriate framework to model and manage knowledge required to obtain an appropriate solution to a problem, but also the adaptation knowledge. In addition to the formalization of adaptation knowledge, one of the remaining major difficulties lies in knowledge acquisition. In the proposed approach, the traditional CBR cycle has been modified to create a user interaction loop. When an adaptation failure occurs, this loop is activated and the expert is asked to make the necessary changes to achieve an appropriate solution. This correction is an opportunity to acquire this new knowledge online, which will be subsequently updated and added into the system. A case study on the design of a unit operation of Process Engineering is used to illustrate the approach
|
Page generated in 0.0662 seconds