• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study to Determine Where and at What Age Senior Boys in Three Selected Senior High Schools of Utah Acquired Knowledge and Skill in Activities

Jewkes, A. Hue 01 January 1950 (has links)
No description available.
2

Využití prostředků informačních technologií v hodinách hudební výchovy / Use of the information technology in the lessons of music education

Vosyková, Petra January 2012 (has links)
Thesis, entitled Use of the information technology in the lessons of music education aims to compare different approaches to teaching music education in high school, specifically to compare the form of traditional teaching with teaching by using an interactive whiteboard, in terms of their influence on memorization of curriculum. To verify the hypothesis implied that the use of interactive whiteboards in the lessons of music education has a positive impact on the level of acquired student's knowledge, I have created materials for lessons. These include both teaching material (supplied on CDROM), and verification tests, which enabled us to compare the results of the control groups of students. The analysis of the obtained results confirmed the expected hypothesis; difference between the control groups emerged, however, was not large enough to be able to clearly demonstrate that better results were caused by the use of interactive whiteboards in the classroom. Positive contribution of interactive whiteboard reflected greater involvement of students in the lessons and proactive approach to the studied topics, which in turn positively influenced the level of their acquired knowledge.
3

Extraction et modélisation de connaissances : Application à la conception de procédés / Extraction and Modeling of Knowledge : Application in Process Design

Roldan Reyes, Eduardo 23 November 2012 (has links)
L'activité de conception est un processus complexe et décisif dans le cycle de vie des produits et des procédés de fabrication. Dans le contexte actuel, les chercheurs et ingénieurs de conception notent une nette augmentation de la complexité des produits et procédés, pour satisfaire au mieux l’ensemble des exigences croissantes provenant de l’ensemble des acteurs du cycle de vie (industriels et utilisateurs) mais aussi du monde normatif. La gestion des connaissances et de l’expertise métier est un atout important pour rendre plus efficace et accélérer ce processus. Les recherches actuelles sur la gestion des connaissances font émerger des méthodes et outils performants pour identifier, formaliser, exploiter et diffuser la connaissance et les expériences issues de conceptions passées en vue de produire rapidement de nouvelles solutions. Parmi les approches existantes le Raisonnement à Partir de Cas (RàPC) et la Programmation Par Contraintes (PPC) correspondent aux besoins identifiés en Génie des Procédés. A partir de l’analyse de ces deux approches, ce travail propose un couplage du RàPC et de la PPC afin de fournir un cadre méthodologique et un outil logiciel pour une aide à la conception. Le RàPC permet de capitaliser et de remémorer les expériences passées. Toutefois, la modification de la solution passée pour répondre aux exigences du nouveau problème nécessite l’ajout de nouvelles connaissances aussi appelées connaissances d’adaptation. La PPC, quant à elle, offre justement un cadre approprié pour modéliser et gérer la connaissance permettant l’obtention d’une solution à un problème mais aussi ces connaissances d’adaptation. Outre la formalisation des connaissances d’adaptation, une des difficultés réside dans l’acquisition de ces connaissances. Dans l’approche proposée, le cycle traditionnel du RàPC a été modifié de façon à créer une boucle d’interaction avec l’utilisateur. Lorsqu’un échec d’adaptation se produit, cette boucle est activée et l’expert est sollicité pour apporter les modifications nécessaires à l’obtention d’une solution appropriée. Cette correction est l’occasion d’acquérir en ligne cette nouvelle connaissance, qui sera par la suite mise à jour et ajoutée dans le système. Un cas d’étude sur la conception d’une opération unitaire de génie des procédés permet d’illustrer l’approche. / Design is a complex and crucial process within the lifecycle of products and production processes. In the current context, design engineers and researchers notice an increasing in complexity of products and processes, in order to meet all the requirements coming from all the participants(manufacturers and users alike) in the life cycle and in the normative world as well. Knowledge management is an important asset to accelerate this process and improve its efficiency. Current research on knowledge management is producing new methods and tools to identify, formalize, exploit and disseminate knowledge from past designs experiences to produce new solutions rapidly. Among existing approaches, Case-Based Reasoning (CBR) and Constraint Programming (CP) are suited to needs identified in Process Engineering. Based on the analysis of these two approaches, this work proposes a coupling of CBR and the CP to provide a methodological framework and a software tool to assist design. The CBR allows to capitalize and retrieve past experiences. However, transforming the past solution to fit the new problem requirements needs the addition of new knowledge also known as Adaptation Knowledge. CP, meanwhile, offers an appropriate framework to model and manage knowledge required to obtain an appropriate solution to a problem, but also the adaptation knowledge. In addition to the formalization of adaptation knowledge, one of the remaining major difficulties lies in knowledge acquisition. In the proposed approach, the traditional CBR cycle has been modified to create a user interaction loop. When an adaptation failure occurs, this loop is activated and the expert is asked to make the necessary changes to achieve an appropriate solution. This correction is an opportunity to acquire this new knowledge online, which will be subsequently updated and added into the system. A case study on the design of a unit operation of Process Engineering is used to illustrate the approach
4

AdaptMLearning: uma proposta de sistema de aprendizagem adaptativo e inteligente. / AdaptMLearning: a proposal of intelligent and adaptive learning system.

Oliveira, Ivan Carlos Alcântara de 15 May 2013 (has links)
Sistemas de Aprendizagem Adaptativos e Inteligentes, tema de pesquisa recente no mundo, são ambientes com arquitetura e algoritmos específicos, que consideram as características individuais de cada estudante para selecionar o objeto de aprendizagem mais adequado a ser oferecido ao aluno. O rápido desenvolvimento da infraestrutura sem fio e o amplo uso de dispositivos móveis na vida diária das pessoas motivam as pesquisas relativas ao uso desses dispositivos na educação, proporcionando o m-learning. Assim, relacionado a essas linhas de pesquisa, este trabalho propõe a arquitetura AdaptMLearning, elaborada para prover a aprendizagem em plataformas móveis e não móveis, considerando a seleção de objetos de aprendizagem que melhor se adaptam a diversos aspectos, tais como: dados sobre a tecnologia utilizada para acesso; informações sobre o estilo de aprendizagem de um estudante; desempenho e tempo associados à interação do estudante com o objeto de aprendizagem; conhecimentos adquiridos pelo estudante em consonância ao conteúdo do curso; e a garantia de que não só o professor possa configurar as adaptações a serem oferecidas ao seu curso, como também o aluno tenha a possibilidade de informar sua preferência pelos tipos de mídia. Essa arquitetura é baseada no modelo de referência AHAM para sistemas adaptativos AEHS, contemplando a quádrupla: espaço do conhecimento, modelo do usuário, observações e modelo de adaptação, referente à definição lógica desses sistemas. Na AdaptMLearning, foram desenvolvidos alguns algoritmos, utilizando-se o modelo FSLSM, relacionado aos estilos de aprendizagem de um estudante e o padrão IEEE 1484 para catalogação dos objetos de aprendizagem e uso de alguns atributos de suas categorias, associados às dimensões dos estilos de aprendizagem do modelo FSLSM. O algoritmo calcula um peso para um objeto catalogado em cada dimensão e permite uma busca pelo objeto mais adequado ao estilo do estudante, além de usar a computação fuzzy, para avaliar se o estudante pode sofrer mudanças no seu estilo, deve receber reforço ou necessita de um reestudo em determinado assunto de um curso, por meio de resultados obtidos com o tempo de estudo e desempenho. Também, este trabalho apresenta o desenvolvimento e a avaliação de um simulador para a arquitetura AdaptMLearning e seus algoritmos, realizada utilizando diversos cenários de simulação, envolvendo estudantes, cursos e tecnologias com diferentes configurações. Assim sendo, com base nos resultados obtidos por meio da avaliação, foi possível discutir, analisar e identificar o potencial de uso da AdaptMLearning e de seus algoritmos em uma situação real para elaboração de um ambiente de aprendizagem ou agregação a um ambiente existente. / Intelligent and Adaptive Learning Systems, subject of recent research in the world, are environments with specific architectures and algorithms, designed considering the individual characteristics of each student. The rapid development of wireless infrastructures and wide use of mobile devices in people\'s everyday life encourage research about the use of these devices in education, providing the mlearning. In the context of such research, this work proposes the AdaptMLearning architecture that was designed to be a learning infrastructure for mobile and nonmobile platforms. This architecture provides a selection of learning objects that takes into account as adaptation criteria the following data: the mobile device\'s technological specification; the student\'s learning style information, his/her performance and spent time associated to the student\'s interaction with the learning object; previously acquired knowledge by the student related to the course\'s content. In addition, it also allows the teacher to interfere in the adaptation criteria used during the study simulation, and allows the student to indicate his/her preferences for media types. This architecture is based on AHAM reference model for adaptive systems AEHS and uses the quadruple: the knowledge space, the user model, the observations and the model adaptation, referring to the logical definition of these systems. To implement the AdaptMLearning architecture some algorithms using the FSLSM model related to the student\'s learning styles were developed. The algorithms use the IEEE 1484 for cataloging learning objects and some of its categories and attributes associated with dimensions of learning styles FSLSM model, are used to compute a weight of an object in each dimension allowing a search of the most appropriate object according to the student\'s learning styles; and the use of fuzzy computing, considering that the student\'s learning style can change, determines if the student has to receive reinforcement or need a new study in a particular subject of a course, when the student gets unsatisfactory results in terms of timing and performance in a course\'s subject. Also, this work also presents the development and evaluation of a simulator for the AdaptMLearning architecture and their algorithms. The evaluation of the simulator was done by means of many simulations scenarios, considering students, courses and technologies with different settings. Based on the results obtained from the evaluation it was possible to discuss, analyze and identify the potential use of AdaptMLearning architecture and their algorithms in a real situation for developing a learning environment or its aggregation to an existing environment.
5

AdaptMLearning: uma proposta de sistema de aprendizagem adaptativo e inteligente. / AdaptMLearning: a proposal of intelligent and adaptive learning system.

Ivan Carlos Alcântara de Oliveira 15 May 2013 (has links)
Sistemas de Aprendizagem Adaptativos e Inteligentes, tema de pesquisa recente no mundo, são ambientes com arquitetura e algoritmos específicos, que consideram as características individuais de cada estudante para selecionar o objeto de aprendizagem mais adequado a ser oferecido ao aluno. O rápido desenvolvimento da infraestrutura sem fio e o amplo uso de dispositivos móveis na vida diária das pessoas motivam as pesquisas relativas ao uso desses dispositivos na educação, proporcionando o m-learning. Assim, relacionado a essas linhas de pesquisa, este trabalho propõe a arquitetura AdaptMLearning, elaborada para prover a aprendizagem em plataformas móveis e não móveis, considerando a seleção de objetos de aprendizagem que melhor se adaptam a diversos aspectos, tais como: dados sobre a tecnologia utilizada para acesso; informações sobre o estilo de aprendizagem de um estudante; desempenho e tempo associados à interação do estudante com o objeto de aprendizagem; conhecimentos adquiridos pelo estudante em consonância ao conteúdo do curso; e a garantia de que não só o professor possa configurar as adaptações a serem oferecidas ao seu curso, como também o aluno tenha a possibilidade de informar sua preferência pelos tipos de mídia. Essa arquitetura é baseada no modelo de referência AHAM para sistemas adaptativos AEHS, contemplando a quádrupla: espaço do conhecimento, modelo do usuário, observações e modelo de adaptação, referente à definição lógica desses sistemas. Na AdaptMLearning, foram desenvolvidos alguns algoritmos, utilizando-se o modelo FSLSM, relacionado aos estilos de aprendizagem de um estudante e o padrão IEEE 1484 para catalogação dos objetos de aprendizagem e uso de alguns atributos de suas categorias, associados às dimensões dos estilos de aprendizagem do modelo FSLSM. O algoritmo calcula um peso para um objeto catalogado em cada dimensão e permite uma busca pelo objeto mais adequado ao estilo do estudante, além de usar a computação fuzzy, para avaliar se o estudante pode sofrer mudanças no seu estilo, deve receber reforço ou necessita de um reestudo em determinado assunto de um curso, por meio de resultados obtidos com o tempo de estudo e desempenho. Também, este trabalho apresenta o desenvolvimento e a avaliação de um simulador para a arquitetura AdaptMLearning e seus algoritmos, realizada utilizando diversos cenários de simulação, envolvendo estudantes, cursos e tecnologias com diferentes configurações. Assim sendo, com base nos resultados obtidos por meio da avaliação, foi possível discutir, analisar e identificar o potencial de uso da AdaptMLearning e de seus algoritmos em uma situação real para elaboração de um ambiente de aprendizagem ou agregação a um ambiente existente. / Intelligent and Adaptive Learning Systems, subject of recent research in the world, are environments with specific architectures and algorithms, designed considering the individual characteristics of each student. The rapid development of wireless infrastructures and wide use of mobile devices in people\'s everyday life encourage research about the use of these devices in education, providing the mlearning. In the context of such research, this work proposes the AdaptMLearning architecture that was designed to be a learning infrastructure for mobile and nonmobile platforms. This architecture provides a selection of learning objects that takes into account as adaptation criteria the following data: the mobile device\'s technological specification; the student\'s learning style information, his/her performance and spent time associated to the student\'s interaction with the learning object; previously acquired knowledge by the student related to the course\'s content. In addition, it also allows the teacher to interfere in the adaptation criteria used during the study simulation, and allows the student to indicate his/her preferences for media types. This architecture is based on AHAM reference model for adaptive systems AEHS and uses the quadruple: the knowledge space, the user model, the observations and the model adaptation, referring to the logical definition of these systems. To implement the AdaptMLearning architecture some algorithms using the FSLSM model related to the student\'s learning styles were developed. The algorithms use the IEEE 1484 for cataloging learning objects and some of its categories and attributes associated with dimensions of learning styles FSLSM model, are used to compute a weight of an object in each dimension allowing a search of the most appropriate object according to the student\'s learning styles; and the use of fuzzy computing, considering that the student\'s learning style can change, determines if the student has to receive reinforcement or need a new study in a particular subject of a course, when the student gets unsatisfactory results in terms of timing and performance in a course\'s subject. Also, this work also presents the development and evaluation of a simulator for the AdaptMLearning architecture and their algorithms. The evaluation of the simulator was done by means of many simulations scenarios, considering students, courses and technologies with different settings. Based on the results obtained from the evaluation it was possible to discuss, analyze and identify the potential use of AdaptMLearning architecture and their algorithms in a real situation for developing a learning environment or its aggregation to an existing environment.

Page generated in 0.0311 seconds