• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 35
  • 23
  • 19
  • 19
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Numerical modelling of reinforced concrete slabs subject to impact loading

Tahmasebinia, Faham. January 2008 (has links)
Thesis (M.E.-Res.)--University of Wollongong, 2008. / Typescript. Includes bibliographical references: leaf 163-172.
62

Behaviour and strength of CFRP reinforced flat plate interior column connections subjected to shear and unbalanced moments /

Zaghloul, Ashraf January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2002. / Includes bibliographical references (p. 268-281). Also available in electronic format on the Internet.
63

A simplified finite element model for time-dependent deflections of flat slabs

Cloete, Renier. January 2005 (has links)
Thesis (M.Eng.(Structural Engineering))--University of Pretoria, 2004. / Summary in Afrikaans. Includes bibliographical references.
64

Punching shear strength of interior and edge column-slab connections in CFRP reinforced flat plate structures transferring shear and moment /

Zaghloul, Ashraf, January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 351-372). Also available in electronic format on the Internet.
65

A neural network approach for predicting the structural behavior of concrete slabs /

Tully, Susan Hentschel, January 1997 (has links)
Thesis (M. Eng.)--Memorial University of Newfoundland, 1997. / Bibliography: leaves 103-108.
66

Behavior and modeling of reinforced concrete slab-column connections

Tian, Ying, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
67

Tests of continuous concrete slabs reinforced with carbon fibre reinforced polymer bars

Mahroug, Mohamed E.M., Ashour, Ashraf, Lam, Dennis 11 June 2014 (has links)
no / Although several research studies have been conducted on simply supported concrete elements reinforced with fibre reinforced polymer (FRP) bars, there is little reported work on the behaviour of continuous elements. This paper reports the testing of four continuously supported concrete slabs reinforced with carbon fibre reinforced polymer (CFRP) bars. Different arrangements of CFRP reinforcement at mid-span and over the middle support were considered. Two simply supported concrete slabs reinforced with under and over CFRP reinforcement and a continuous concrete slab reinforced with steel bars were also tested for comparison purposes. All continuous CFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. It was also shown that increasing the bottom mid-span CFRP reinforcement of continuous slabs is more effective than the top over middle support CFRP reinforcement in improving the load capacity and reducing mid-span deflections. The ACI 440.1R–06 formulas overestimated the experimental moment at failure but better predicted the load capacity of continuous CFRP reinforced concrete slabs tested. The ACI 440.1R–06, ISIS–M03–07 and CSA S806-06 design code equations reasonably predicted the deflections of the CFRP continuously supported slabs having under reinforcement at the bottom layer but underestimated deflections of continuous slabs with over-reinforcement at the bottom layer.
68

Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars

Mahroug, Mohamed E.M., Ashour, Ashraf, Lam, Dennis January 2014 (has links)
This paper presents test results and code predictions of four continuously and two simply supported concrete slabs reinforced with basalt fibre reinforced polymer (BFRP) bars. One continuously supported steel reinforced concrete slab was also tested for comparison purposes. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over BFRP reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. Furthermore, the over reinforced BFRP reinforced concrete slab at the top and bottom layers showed the highest load capacity and the least deflection of all BFRP slabs tested. All continuous BFRP reinforced concrete slabs failed owing to combined shear and flexure at the middle support region. ISIS-M03-07 and CSA S806-06 design guidelines reasonably predicted the deflection of the BFRP slabs tested. However, ACI 440-1R-06 underestimated the BFRP slab deflections and overestimated the moment capacities at mid-span and over support sections.
69

Design Considerations for Composite Beams Using Precast Concrete Slabs.

Hicks, S., Lawson, R.M., Lam, Dennis January 2006 (has links)
no / Precast concrete floors are widely used in building construction, but there is little detailed design guidance on their application in steel-framed buildings. Traditionally the steel beams have been designed to support the precast slabs on their top flange. However, there are an increasing number of composite frames and slim floor constructions where the precast slabs are designed to interact structurally with the steel frame. Composite action can be developed by welded shear connectors attached to the steel beams and by transverse reinforcement; however, this form of construction is currently outside the provisions of the current codes of practice. This paper discusses some of the particular issues that affect this form of construction, and presents design guidance using the Eurocode methodology.
70

Recent Research and Development in Composite Steel Beams with Precast Hollow Core Slabs.

Lam, Dennis, Uy, B. January 2003 (has links)
no / The recently published report on Rethinking Construction in the UK has highlighted the need to reduce on-site activities as part of its drive for greater efficiency, improved quality and greater certainty in the delivery of construction projects. For multi-storey buildings, the use of precast slabs in the floors - particularly if this can be done without the need for in-situ screeds - drastically reduces the volume of on-site concreting required. Although the use of precast hollow core slabs in steel framed buildings are common, their use in composite design with steel beams is relatively new. By designing the steel beams and precast hollow core slabs compositely, a reduction in beam size and overall floor depth can be achieved, which would lead to an overall reduction in construction cost. This paper summarises the recent developments and on-going research on composite construction with precast hollow core slabs.

Page generated in 0.072 seconds