• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Precast concrete load bearing wall panels

Chandwani, Ramesh Hassanand January 1970 (has links)
The object of this thesis is twinfold. Firstly, to study and check the effective width requirements recommended by different committees¹ for the design of ribbed precast concrete load bearing walls. Secondly, to rationalize the practice of the designing of the precast prefabricated components of any general polygonal shape. The recommendations regarding the minimum thickness of a thin wall, the effective width, etc., have been specified for some cases in code books and other tentative specification books², in the form of rules of thumb. In these rules of thumb, several parameters which may be of significance, such as dimensions of the rib itself, are not taken into account. A finite element approach has been adopted to investigate various combinations of these parameters, as well as the effects of different boundary conditions. Similar problems arise also in the cases of T-beams, L-beams and design of aircraft structures, in which a stressed skin is mounted on ribs, which are assembled in the form of a space frame. So far interaction curves have been made available in some design books only for the prestressed concrete member having rectangular cross-sections and for any other shape, approximations are made, such as making a rectangular section having an equivalent area or having the same moment of inertia or section modulii, etc. But this practice seems very irrational especially in the case of precast components which are always produced in a factory on a mass scale. A computer program has been written which can give the interaction curve for the member of any polygonal shape. 1. DRAFT 3: Of PCI Committee, 'Recommendations for Prestressed Bearing Wall Design.' 2. 'Symposium on Precast Concrete Wall Panels.' Publications ACI, SP-11, Second Printing 1966, pp. 39-44. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
12

Resistance of membrane retrofit concrete masonry walls to lateral pressure

Moradi, Lee. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed Feb. 4, 2010). Additional advisors: James S. Davidson, Robert J. Dinan, Alan E. Eberhardt, Jason T. Kirby, Talat Salama, Houssam A. Toutanji. Includes bibliographical references (p. 139-146).
13

An investigation of the strength of concrete masonry shear wall structures

Balachandran, Krishnaiyer, January 1974 (has links)
Thesis--University of Florida. / Description based on print version record. Typescript. Vita. Bibliography: leaves 221-226.
14

Seismic performance of reinforced concrete wall structures under high axial load with particular application to low-to moderate seismicregions

Wong, Sze-man., 黃思敏. January 2005 (has links)
The Best Master's Thesis Award of the Hong Kong Section, American Society of Civil Engineers (2005-06) / published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
15

Seismic damage avoidance design of warehouse buildings constructed using precast hollow core panels : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Civil Engineering in the University of Canterbury /

Abdul Hamid, N. H. January 2006 (has links)
Thesis (Ph. D.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
16

Behaviour of PVC Encased Reinforced Concrete Walls under Eccentric Axial Loading

Abdel Havez, Amr January 2014 (has links)
Stay-in-place (SIP) formwork has been used as an alternative to the conventional formwork system. The systems are mainly assembled on site, hence simplifying the construction process and reducing the construction time as the removal procedure has been eliminated. SIP formwork systems can be divided into two main categories; structural and non-structural formwork, based on their contribution to resist applied loads. The structural formwork provides the same advantages as the non-structural formwork, in addition to its contribution to resist the applied loads. As a result, the cross section and the reinforcement of the structural member can be reduced. Recently, polyvinyl chloride (PVC) has been used as a stay-in-place formwork because of its lower cost compared to other materials, durability, and ease to assemble. The PVC SIP formwork consists of interconnected elements; panels and connectors that serve as permanent formwork for the concrete walls. In this study, the behaviour of the PVC encased reinforced concrete walls under eccentric compression loading was investigated. The variables in this study were the type of the specimen (PVC encased or control), the longitudinal reinforcement (4-10M or 4-15M rebars) and the eccentricity of the applied compression load (33.87 mm, 67.73 mm and 101.6 mm). Generally, the control walls (without PVC encasement) failed by yielding of the steel followed by crushing of the concrete, or by crushing of the concrete without yielding of the steel. For the PVC encased walls, buckling of the PVC occurred after the concrete crushed. The PVC encased specimens showed a higher peak load than their peer control walls. The effect of the PVC on increasing the ultimate capacity at a given eccentricity was more significant for the walls reinforced with 4-10M than the walls reinforced with 4-15M. For the lowest reinforcement ratio (4-10M), the PVC encased specimens showed an increase in peak load by 37.2% and 17.1% at an eccentricity of 67.73 mm and 101.6 mm, respectively. When the reinforcement was increased to 4-15 M, the increase in the peak load dropped at all eccentricities to 10%. For the vertical and the mid-span deflection, the PVC encased specimens and the control specimens showed the same values. Also, the test results showed an increase in the energy absorption capacity for the PVC encased specimens compared to the controls specimens, where the effect for the walls reinforced with 4-10M was higher than the walls reinforced with 4-15M at a given eccentricity. An analytical model was developed to predict the ultimate load capacity of the specimens taking into consideration the effect of the PVC on the load carrying capacity of the walls. The provision was derived based on the moment magnification factor method in which the effect of secondary stresses associated with the column deformations was taken into consideration. The calculated capacities of the PVC encased specimens showed a conservative error of 5.9% on average.
17

Rehabilitation of reinforced concrete structural walls using fibre composites /

Khalil, Ahmed Amir. Ghobarah, Ahmed. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: A. Ghobarah. Also available online.
18

Rehabilitation of reinforced concrete structural walls using fibre composites /

Khalil, Ahmed Amir. Ghobarah, Ahmed. January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: A. Ghobarah. Also available online.
19

Evaluation of elastomeric polymers used for external reinforcement of masonry walls subjected to blast /

Thornburg, Danica Leigh. January 2004 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2004. / Printout. Includes bibliographical references (leaves 264-266). Also available online.
20

The use of rocking walls in confined masonry structures : a performance-based approach : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Civil Engineering at the University of Canterbury /

Toranzo-Dianderas, Luis Alberto. January 2002 (has links)
Thesis (Ph. D.)--University of Canterbury, 2002. / Typescript (photocopy). Includes bibliographical references (p. 179-186).

Page generated in 0.0347 seconds