Spelling suggestions: "subject:"creepfatigue"" "subject:"concernfatigue""
11 |
Behaviour of partially prestressed concrete structures under fatigue loading / by Moo-Heck FooFoo, M. H. January 1986 (has links)
One microfiche in pocket / Bibliography: leaves 329-354 / xxiv, 354 leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, 1986
|
12 |
Consideration of strand fatigue for load rating prestressed concrete bridgesHagenberger, Michael John 28 August 2008 (has links)
Not available / text
|
13 |
Time effects in the static testing of concrete to determine fracture energySiew, Hoi Choong. January 1986 (has links)
Call number: LD2668 .T4 1986 S53 / Master of Science / Civil Engineering
|
14 |
Evaluation of proposed methods to determine fracture parameters for concrete in bendingYap, Sze-Ting. January 1986 (has links)
Call number: LD2668 .T4 1986 Y362 / Master of Science / Civil Engineering
|
15 |
Analysis of blast/explosion resistant reinforced concrete solid slab and T-Beam bridgesUnknown Date (has links) (PDF)
This study presents and illustrates a methodology to calculate the capacity of an existing reinforced concrete bridge under a non-conventional blast load due to low and intermediate pressures. ATBlast program is used to calculate the blast loads for known values of charge weight and stand off distance. An excel spreadsheet is generated to calculate ultimate resistance, equivalent elastic stiffness, equivalent elastic deflection, natural period of the beam, the maximum deflection, and the maximum rotation in the support for a simple span solid slab and T-Beam bridges. The allowable rotation could be taken as to two degrees. Naval Facility Engineering Command (NAVFAC) approach was adopted, where the inputs were material properties, span length, and area of reinforcement. The use of the Fiber Reinforced Polymer for increasing the capacity of an existing bridge is also presented in this study. Parametric studies were carried out to evaluate the performance of the solid slab and T-Beam bridges under the assumed blast load. / by Firas A. Abdelahad. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, FL : 2008 Mode of access: World Wide Web.
|
16 |
Static and fatigue analyses of reinforced concrete beams strengthened with carbon fiber reinforced plastic (CFRP) laminatesOgunc, Cahit 01 April 2001 (has links)
No description available.
|
17 |
Studies on the Modeling of Fatigue Crack Growth and Damage in Concrete : A Thermodynamic ApproachKhatoon, Pervaiz Fathima M January 2014 (has links) (PDF)
Fatigue in concrete is a complex phenomenon involving formation of microcracks, their coalescence into major crack and simultaneous formation of the fracture process zone ahead of the crack tip. Complex phenomena are best dealt through an energy approach and hence it is reasonable to use the theory of thermodynamics. Fracture mechanics and damage mechanics are two theories that are based on physically sound principles and are used to describe failure processes in materials. The former deals with the study of macroscopic cracks, whereas the latter defines the state of microcracking. In this study, the concepts from these theories are utilized to improve our understanding and modeling of fatigue process in concrete.
In this thesis, a closed form expression for the thermodynamic function entropy is proposed and examined for its size independency and its use as a material property to characterize failure of concrete under fatigue. In the thermodynamic formalism, dissipative phenomena are described by a dissipation potential or its dual, from which evolution laws for internal variables could be defined. In this work, closed form expressions for dual of dissipation potential are derived using concepts of dimensional analysis and self-similarity within the framework of fracture mechanics and damage mechanics. Consequently, a fatigue crack propagation law and a fatigue damage evolution law are proposed respectively.
A method is proposed in this study to correlate fracture mechanics and damage mechanics theories by equating the potentials obtained in each theory. Through this equivalence, a crack could be transformed into an equivalent damage zone and vice versa. Also, damage state corresponding to a given crack in a member can be quantified in terms of a damage index. An analytical way of computing size independent S-N curves is proposed, using a nonlocal damage theory by including aggregate size and specimen size in the formulation. It is realized from this study that fracture mechanics and damage mechanics theories should be used in a unified manner in order to accurately model the process of fatigue in concrete.
Furthermore, based on the models developed in this study, several damage indicators for fatigue of concrete are proposed. The advantages and limitations of each of these indices are presented such that, the relevant damage index could be used, based on available parameters. Additionally, deterministic sensitivity studies are carried out to determine the most important parameters influencing fatigue life of a concrete member.
|
18 |
Studies on Fracture and Fatigue Behavior of Cementitious Materials- Effects of Interfacial Transition Zone, Microcracking and Aggregate BridgingKeerthy, M Simon January 2015 (has links) (PDF)
The microstructure of concrete contains random features over a wide range of length scales in which each length scale possess a new random composite. The influence of individual material constituents at different scales and their mutual interactions are responsible for the formation of fracture process zone (FPZ). The presence of the FPZ and the various toughening mechanism occurring in it, influences the fatigue and fracture behavior of concrete which also gets influenced by the geometry, spacial distribution and material properties of individual material constituents and their mutual interactions. Hence, in order to study the influence of interfacial transition zone, microcrack and aggregate bridging on the fracture and fatigue behavior of concrete, a multiscale analysis becomes necessary.
This study aims at developing a linearized model which helps in understanding the fracture and fatigue behavior of cementitious materials by considering the predominant fracture process zone (FPZ) mechanisms such as microcracking and aggregate bridging. This is achieved by quantifying the critical microcrack length and the bridging resistance offered by the aggregates. Further, the moment carrying capacity of a cracked concrete beam is determined by considering the effect of aggregate bridging. A modified stress intensity factor (SIF) is derived based on linear elastic fracture mechanics (LEFM) approach by considering the material behavior at different scales through a multiscale approach. The model predicts the entire crack growth curve for plain concrete by considering these process zone mechanisms.
Furthermore, the fracture and fatigue response of concrete is studied through the development of analytical models which include the properties of the mix constituents using the multiscale based SIF. The effect of the interfacial transition zone, microcracks and resistance offered through aggregate bridging on the resistance to crack initiation and propagation are studied. A fatigue crack growth law is proposed using the concepts of dimensional analysis and self-similarity. Through sensitivity analyses, the influence of different parameters on the overall fracture and fatigue behavior are studied.
In addition, studies related to concrete-concrete bi-material interfaces are conducted in order to understand the influence of repair materials on the service life of damaged concrete structures when subjected to fatigue loading. An analytical model is proposed in this study to predict the crack growth curve using the concepts of dimensional analysis and self-similarity in conjunction with the human population growth model. It is seen that a repair done with a patch having similar elastic properties as those of the parent concrete will have a larger fatigue life.
|
19 |
Studies On Fatigue Crack Propagation In Cementitious Materials : A Dimensional Analysis ApproachRay, Sonalisa 10 1900 (has links) (PDF)
Crack propagation in structures when subjected to fatigue loading, follows three different phases namely - short crack growth, stable crack growth and unstable crack growth. Accurate fatigue life prediction demands the consideration of every crack propagation phase rather than only the stable crack growth stage. Further, the use of existing crack growth laws in structures with small cracks under-predicts the growth rate compared to experimentally observed ones, thereby leading to an unsafe design and keeping the structure in a potentially dangerous state. In the present work, an attempt is made to establish fatigue crack propagation laws for plain concrete, reinforced concrete and concrete-concrete jointed interfaces from first principles using the concepts of dimensional analysis and self-similarity. Different crack growth laws are proposed to understand the behavior in each of the three regimes of the fatigue crack growth curve. Important crack growth characterizing material and geometrical parameters for each zone are included in the proposed analytical models. In real life applications to structures, the amplitude of cyclic loading rarely remains constant and is subjected to a wide spectrum of load amplitudes. Furthermore, the crack growth behavior changes in the presence of high amplitude load spikes within a constant amplitude history and this is incorporated in the model formulation. Using scaling laws, an improved understanding of the scaling behavior on different parameters is achieved. The models describing different regimes of crack propagation are finally unified to obtain the entire crack growth curve and compute the total fatigue life.
In addition, crack growth analysis is performed for a reinforced concrete member by modifying the model derived for plain concrete in the Paris regime. Energy dissipation occurring due to shake-down phenomenon in steel reinforcement is addressed. The bond-slip mechanism which is of serious concern in reinforced concrete members is included in the study and a method is proposed for the prediction of residual moment carrying capacity as a function of relative crack depth.
The application of the proposed analytical model in the computation of fatigue crack growth is demonstrated on three practical problems – beam in flexure, concrete arch bridge and a patch repaired beam. Through a sensitivity study, the influence of different parameters on the crack growth behavior is highlighted.
|
20 |
Bounding Surface Approach to the Fatigue Modeling of Engineering Materials with Applications to Woven Fabric Composites and ConcreteWen, Chao January 2011 (has links)
It has been known that the nucleation and growth of cracks and defects dominate the fatigue damage process in brittle or quasi-brittle materials, such as woven fabric composites and concrete. The behaviors of these materials under multiaxial tensile or compression fatigue loading conditions are quite complex, necessitating a unified approach based on principles of mechanics and thermodynamics that offers good predictive capabilities while maintaining simplicity for robust engineering calculations. A unified approach has been proposed in this dissertation to simulate the change of mechanical properties of the woven fabric composite and steel fiber reinforced concrete under uniaxial and biaxial fatigue loading. The boundary surface theory is used to describe the effect of biaxial fatigue loading. A fourth-order response tensor is used to reflect the high directionality of the damage development, and a second-order response tensor is used to describe the evolution of inelastic deformation due to damage. A direction function is used to capture the strength anisotropic property of the woven fabric composite. The comparisons between model prediction results and experimental data show the good prediction capability of models proposed in this dissertation.
|
Page generated in 0.045 seconds