• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 4
  • Tagged with
  • 34
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Surface Displacements Induced in Loaded Cross-Ply Composite Laminates with Microcracking

Rayasam, Balakishore 21 May 2004 (has links)
This work is aimed at investigating out-of-plane displacement data on the top surface of a loaded composite laminate containing microcracking damage to explore the feasibility of using surface data to locate microcracks in laminates. In this study, finite element models are created for eleven different cross-ply IM7/977-2 laminates with ply numbers varying from four to ten. Here, each ply thickness is 0.127mm, which is the common laminate thickness commercially available for this material system. For each model a range of transverse loadings are applied and the surface displacement data are analyzed along the mid-plane perpendicular to the plane of the crack. The following outof- plane surface data parameters are obtained for each case: the minimal value above the crack tip, the peak value, and the far-field value. The difference in the peak and minimal values for a given loading is important in determining whether or not the optical technique is sensitive enough to resolve the data. The lateral distance to the peak values and the far-field values are also obtained. These distances are important in determining whether or not an optical system can spatially resolve the data. Results suggest that an optical technique such as digital holography could resolve, at a minimum, the data of [0/90/90/0], [0/90/90/90/90/0], and [0/0/90/90/90/90/0/0] laminates subjected to transverse loads of 1000 MPa.
2

Investigation of Microcracking and Damage Propagation in Cross-Ply Composite Laminates

Hottengada, Babruvahan 22 May 2006 (has links)
The present study investigates microcracking and damage progression in IM7/977-2, IM7/5555, and IM7/5276-1 [0/90/90/0] laminates. For each material system, seven to eight small coupons were axially loaded in a tensile substage. At increments of around 50 MPa the surfaces of the specimens were inspected via optical microscopy so that a history of microcracking damage as a function of applied loading could be charted. In the IM7/977-2 laminates microcracks were found to initiate on average at around 1050MPa; microcracking initiation for the other two systems was around 850 to 900 MPa. Also, the IM7/977-2 system displayed a steeper increase in crack density as a function of applied loading than the other two systems. The IM7/5555 system was the only system that achieved a microcracking saturation density; the saturation density was found to be around 17 cracks per centimeter. While the IM7/977-2 and IM7/5276-1 systems typically broke into two pieces at failure, the IM7/5555 specimens shattered into pieces. In addition, delaminations were observed in a majority of the IM7/5555 specimens at loadings 250MPa under the failure loads.
3

Investigation of Microcrack Growth in [0/90]s Graphite Epoxy Composite Laminates Using X-Ray Microtomography

Tatiparthi, Arun 21 May 2004 (has links)
Graphite epoxy composites are being used in aerospace industry and spacecraft applications for their light weight and high strength. As a matter of fact these materials also have some disadvantages like damage which is hazardous when used in cryogenic application. Composite materials IM7/977-2, IM7/5555 and IM7/5276-1 are of interest for the aerospace industry and this research concentrates on study of microcracking, delamination and other defects in the [0/90]s composite laminates of the above materials. These materials were uni-axially tested to pre-determined stress levels and the damages in the material were recorded in the form of microcrack density at different stress levels. In this research work the use of X-Ray Microtomography has proven to be an excellent tool to characterize the crack connectivity and damage information three dimensionally. Dye penetrant technique was also used in this work to enhance the visibility of the cracks.
4

Nucléation et propagation de fissures en conditions anisotropes / Cracks propagation and onset in anisotropic conditions

Carlioz, Thomas 14 December 2017 (has links)
En partant d'une problématique industrielle correspondant à la naissance de fissures lors de l'excavation d'un tunnel dans un matériau argileux, nous proposons de nous intéresser à un sujet plus large qui est celui de la nucléation d'une fissure de dimension macroscopique. Ainsi, des résultats généraux et théoriques sont établis tout au long de ce mémoire. Ces derniers sont toutefois utilisés pour proposer une interprétation aux faciès de fissuration observés lors de l'excavation de galeries de stockage à grandeur profondeur. Dans un premier temps, un modèle géométrique idéalisé pour des fissures est justifié. Cette étude préalable permet à la fois d'acter la nature fermée des fissures susceptibles de nucléer ainsi que d'utiliser le critère mixte en statuant sur le bienfondé d'une étude bidimensionnelle équivalente. En précisant la notion de longueur de nucléation stable et en s'inspirant des outils classiques de la mécanique linéaire de la rupture, nous établissons dans un second temps notre propre critère de nucléation. Pour ce faire, nous proposons, grâce à des modélisations micromécaniques, de revisiter l'approche thermodynamique usuelle dans un cadre adiabatique afin d'être davantage en accord avec la brutalité du phénomène étudié. Par la suite, nous mettons aux points différentes méthodes permettant d'utiliser le critère suggéré. Enfin, le critère est mis en œuvre dans le cadre de la problématique industrielle initiale pour essayer de donner une justification à l'anisotropie des géométries des fissures observées, et ce, en prenant en compte les différentes directions de forage de l'ouvrage. Dans un deuxième temps, nous proposons de nous intéresser, de manière plus prospective, aux problématiques liées aux modèles locaux d'endommagement. Une attention particulière est accordée à la notion de stabilité des états d'équilibre. Ainsi, une adaptation du critère de Hill est proposée et des différences quantitatives sont soulignées lorsqu'un cadre adiabatique, nous paraissant plus justifié, est pris en compte. Enfin, le problème de la localisation de l'endommagement dans un problème unidimensionnel est abordé / Starting from an industrial issue that is cracks onset when excavating a tunnel, this work aims at giving new insights into a more general problematic which is the initiation of macroscopic cracks. Thus, general and theoretical results are established. Nevertheless, they are applied in order to give some explanations to the excavation-induced fractures observed around the deep geological repository. To begin with, an idealised geometrical model is detailed and justified. Thanks to this preliminary work, we establish that the cracks that should be taken into account are closed ones. In addition we show that it's possible for small cracks length to work on an equivalent bidimensionnal problem. This last result allows us to apply the mixed criteria. After giving the definition of a stable crack initiation length we define our own criteria to predict cracks onset. In order to do so and in order to be more in adequacy with the caracter brutal of a crack initiation, we offer through a micromecanic modelisation to deploy the usual thermodynamic approach in an adiabatic context. Different methods to compute the key quantity which is the incremental energy released rate are then built. Finally, the criteria is applied to give some justifications to the anisotropic geometry of the excavation-induced fractures. In a second part of this work, we focuse on the problematics tied to the local damage models. For instance, the notion of stability for an equilibrium state is discussed. Hill's stability critera is adapted to damage problems. Once again, it seems that an adiabatic context is more suited and the differences implied are emphasized. To conclude, we offer to investigate the localisation issue in one dimensionnal problems
5

Evaluation of stress in bmi-carbon fiber laminate to determine the onset of microcracking

Pickle, Brent Durrell 17 February 2005 (has links)
In this work the conditions for which a (0,90,90,0,0,90)s BMI-carbon fiber laminate will initiate transverse microcracking are determined for the fabrication of a cryogenic fuel tank for use in a Reusable Launch Vehicle (RLV). This is accomplished using a quadratic interaction criterion failure analysis on the total stress state at possible launch conditions. There are three major sources of stress, that is, thermal residual stress, internal pressure stress, and applied load stress, that are evaluated at the launch stage to determine the total stress state. To assess the accuracy of the analysis the well known X-33 cryogenic fuel tank failure was analyzed as an example. The results of the X-33 example show that the analysis accurately portrays the failure of the X-33 and provides evidence that the analysis can be used to provide reliable conditions for the initiation of microcracking. The final result of this study is a range of launch conditions that can be used without the initiation of microcracking and a limiting range of conditions that cause complete microcracking throughout the laminate.
6

Evaluation of stress in bmi-carbon fiber laminate to determine the onset of microcracking

Pickle, Brent Durrell 17 February 2005 (has links)
In this work the conditions for which a (0,90,90,0,0,90)s BMI-carbon fiber laminate will initiate transverse microcracking are determined for the fabrication of a cryogenic fuel tank for use in a Reusable Launch Vehicle (RLV). This is accomplished using a quadratic interaction criterion failure analysis on the total stress state at possible launch conditions. There are three major sources of stress, that is, thermal residual stress, internal pressure stress, and applied load stress, that are evaluated at the launch stage to determine the total stress state. To assess the accuracy of the analysis the well known X-33 cryogenic fuel tank failure was analyzed as an example. The results of the X-33 example show that the analysis accurately portrays the failure of the X-33 and provides evidence that the analysis can be used to provide reliable conditions for the initiation of microcracking. The final result of this study is a range of launch conditions that can be used without the initiation of microcracking and a limiting range of conditions that cause complete microcracking throughout the laminate.
7

Effects of Thermally-Induced Microcracking on the Quasi-Static and Dynamic Response of Salem Limestone

Crosby, Z Kyle 11 May 2013 (has links)
The effects of microcracking on the mechanical properties of Salem limestone were investigated in three phases: introduction of quantifiable levels of microcracks by thermal treating, mechanical testing of limestone samples with varying levels of microcracks, and modification of a numerical model to incorporate the measured effects. This work demonstrated that this approach is useful for examination of the effects of microcracking on quasi-brittle materials and can be used to improve the predictive capabilities of material models. Thermal treating was found to consistently induce quantifiable levels of microcracks in Salem limestone. Sonic wave velocities indicated that the induced microstructural changes were a function of the maximum temperature. The wave velocities showed little variability demonstrating the effectiveness of the approach for inducing consistent levels of microcracking. X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis confirmed that no composition changes occurred for the temperature range of interest. Computed tomography scanning, scanning electron microscopy, and optical microscopy (OM) were used to observe microstructural changes caused by the heat treatments. OM analysis was the primary method used in the microcrack characterization and yielding qualitative and quantitative data. OM images showed an increase in grain boundary and intragranular cracking with increasing maximum heat treatment temperatures. Stereological evaluation provided microcrack data indicating that microcrack density increased as function of the maximum heat treatment temperatures. Mechanical testing was performed to characterize the mechanical response of the intact and damaged limestone. Quasi-static tests included uniaxial compression, triaxial compression, hydrostatic compression, and uniaxial strain / constant volume tests. Microcracking did not affect the limestone’s strength at pressures greater than 10 MPa. Dynamic tests were performed using a modified split Hopkinson pressure bar. Microcracking did not have an effect on the dynamic strength of the limestone. The results of the mechanical tests were used to modify the HJC model. Modifications were made to account for shear modulus degradation and failure surface changes. The original and modified HJC models were used in a numerical analysis of the mechanical tests performed in this work. The modified HJC provided better results for damaged material when compared with the quasi-static and dynamic experiments.
8

Fretting wear and cracking in sintered metal matrix composites

Wright, Christopher S., Eagles, A.M., Martin, B., Wronski, Andrew S. January 2001 (has links)
No / A methodology, involving fretting tests, to develop wear and crack resistant materials for tribological applications for automotive valve train parts (e.g. cams, tappets) has been recently reported for high speed steels. Modifications to one of these sintered steels, M3 Class 2, were effected by additions, singly and in combination, of 5 wt.% of wear resistant titanium carbide and of solid lubricant manganese sulphide. In our fretting tests alternate displacements were imposed between the test material (plane) and a chromium steel or alumina ball. Running conditions fretting and material response fretting maps were constructed for the four materials. Two types of fretting damage were detected and analysed: cracking or particle detachment and wear through the tribologicaly transformed structure (TTS). Crack initiation, associated with porosity and interfaces, was detected when the maximum tensile stress in the contact reached 1.2 GPa. Cracking analyses were also carried out using static and fatigue mechanical tests and replica scanning electron microscopy. Crack growth and propagation were influenced by details of the microstructure, e.g. TiC was observed to arrest crack growth, whereas MnS made it easier. Wear analysis included the determination after each test of the wear volume, which could be related to the coefficient of friction and the cumulative dissipation energy during the fretting test.
9

Polyimide thin-ply composite

MOUANE, KHALID January 2018 (has links)
Mechanical performance of composite structures is influenced by the accumulation of damage from the manufacturing process and throughout the whole service life. For instance, an aircraft is subjected to a combination of mechanical loading and the thermo-oxidative environment from the take-off to the landing. Therefore, this degree project consists of studying the damage initiation and evolution in carbon fibre reinforced polyimide composites and assesses the thickness effect of the laminated composites. After manufacturing, the level of residual thermal stresses occurring at room temperature lead to the occurrence of microcracks in bundles of the quasi-isotropic composites. Further cooling to cryogenic temperature creates new cracks were appearing. This reinforces the conclusion that cracks are created due to thermal stresses. Comparison between a baseline composite made of carbon fibre T650 8-harness satin weave with thermosetting polyimide resin (ply thickness= 190µm) and thin-ply textile laminate made of Textreme carbon fibre IMS65 (ply thickness=83µm) with the same resin shows that the ply thickness has a significant effect on suppressing or delaying the occurrence and the propagation of microcracks after mechanical loading. It is assumed that there are some edge effects leading to different damage state in 90° and ±45° layers.
10

Influência da microfissuração causada por carregamento precoce nas propriedades mecânicas de concretos produzidos com diferentes tipos de cimento / The influence of microcracking caused by premature load in concretes mechanical properties produced with different cements types

Vieira, Geilma Lima January 2008 (has links)
No Brasil, o processo construtivo como um todo está modificado, assim como o cálculo estrutural e as técnicas gerenciais de construção. Algumas empresas que visam competitividade no mercado buscam soluções para aumentar a velocidade de suas obras, como redução do tempo de execução da estrutura, redução do período de escoramento e antecipação das alvenarias. A retirada antecipada do escoramento submete a estrutura de concreto a um carregamento precoce, sem que haja tempo de ocorrerem todas as reações de hidratação do cimento, podendo desencadear um processo de microfissuração. Dessa forma, o presente estudo avaliou o comportamento das propriedades mecânicas de concretos produzidos com quatro diferentes tipos de cimento (CPV ARI, CPV ARI RS, CPIV RS, CPII Z), quando submetidos a um carregamento precoce de compressão. Foram avaliados resultados de resistência à compressão, resistência à tração por compressão diametral, módulo de elasticidade, velocidade de onda ultra-sônica, condições de cura e ensaios de microscopia eletrônica de varredura. Procurou-se analisar o efeito de diferentes níveis de resistências com a produção de concretos com relações água/cimento de 0,35, 0,50 e 0,70, quando submetidos a um carregamento precoce em diferentes idades (1, 3 e 7 dias) e diferentes percentuais de carregamento (0%, 25%, 50% e 75%). Aos 28 dias foram ensaiados em suas propriedades especificadas. Os resultados mostraram que à medida que aumenta a idade de carregamento, as propriedades mecânicas são melhoradas para todos os cimentos. Por outro lado, quando se aplica os percentuais de pré-carregamento a resistência à compressão tende a aumentar, principalmente para o cimento CPV ARI. A análise de microscopia possibilitou a visualização de microfissuras causadas pelo pré-carregamento, assim como a recuperação das mesmas. Em relação aos outros cimentos foi observada uma queda nos valores de resistência à tração e no módulo de elasticidade. / In Brazil the building process as a role is modified, as well as structural design and building management techniques. The companies that aim competitiveness in the market are in search of solutions to increase the speed of their constructions, like reduction of structure execution time, reduction of support time and anticipated masonry execution. The anticipated remove of support submits the concrete structure to a premature load, carrying damage in cement hydration reaction, can unleash microcracking process. In this way, the present study evaluated the mechanical properties behavior of concretes produced with four different cements types (CPV ARI, CPV ARI RS, CPIV RS, CP IIZ), when submitted to premature compression load. The analysis included evaluation of the results of compressive strength, split tensile strength, modulus of elasticity, ultrasonic pulse velocity, cure conditions and scanning electron microscopic. The effect from different strengths levels with 0.35, 0.50 and 0.70 water/cement ratio, when submitted to a premature load in different ages (1, 3 and 7 days) and different percents of load (0%, 25%, 50% and 75% from rupture load) were analyzed. At The concrete with the age of 28 days was submitted to tests in order to specify its properties. The results showed that the mechanical properties of all cements improve as the age of load increases. In the other hand, when the preload area applied, the compressive strength tends to increase, mainly to CPV ARI cement. The microscopy analysis makes possibly the visualization of microcracking caused by preload, as well the recovering themselves. In the other cements were observed a small decrease in tensile strength and modulus of elasticity values.

Page generated in 0.0654 seconds