• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Thermally-Induced Microcracking on the Quasi-Static and Dynamic Response of Salem Limestone

Crosby, Z Kyle 11 May 2013 (has links)
The effects of microcracking on the mechanical properties of Salem limestone were investigated in three phases: introduction of quantifiable levels of microcracks by thermal treating, mechanical testing of limestone samples with varying levels of microcracks, and modification of a numerical model to incorporate the measured effects. This work demonstrated that this approach is useful for examination of the effects of microcracking on quasi-brittle materials and can be used to improve the predictive capabilities of material models. Thermal treating was found to consistently induce quantifiable levels of microcracks in Salem limestone. Sonic wave velocities indicated that the induced microstructural changes were a function of the maximum temperature. The wave velocities showed little variability demonstrating the effectiveness of the approach for inducing consistent levels of microcracking. X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis confirmed that no composition changes occurred for the temperature range of interest. Computed tomography scanning, scanning electron microscopy, and optical microscopy (OM) were used to observe microstructural changes caused by the heat treatments. OM analysis was the primary method used in the microcrack characterization and yielding qualitative and quantitative data. OM images showed an increase in grain boundary and intragranular cracking with increasing maximum heat treatment temperatures. Stereological evaluation provided microcrack data indicating that microcrack density increased as function of the maximum heat treatment temperatures. Mechanical testing was performed to characterize the mechanical response of the intact and damaged limestone. Quasi-static tests included uniaxial compression, triaxial compression, hydrostatic compression, and uniaxial strain / constant volume tests. Microcracking did not affect the limestone’s strength at pressures greater than 10 MPa. Dynamic tests were performed using a modified split Hopkinson pressure bar. Microcracking did not have an effect on the dynamic strength of the limestone. The results of the mechanical tests were used to modify the HJC model. Modifications were made to account for shear modulus degradation and failure surface changes. The original and modified HJC models were used in a numerical analysis of the mechanical tests performed in this work. The modified HJC provided better results for damaged material when compared with the quasi-static and dynamic experiments.
2

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
3

Um modelo constitutivo de dano composto para simular o comportamento de materiais quase-frágeis

Rodrigues, Eduardo Alexandre [UNESP] 21 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-03-21Bitstream added on 2014-06-13T20:37:41Z : No. of bitstreams: 1 rodrigues_ea_me_bauru.pdf: 1602991 bytes, checksum: 7f755b87b5be84900b2d054f02413197 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / No presente trabalho desenvolve-se um modelo constitutivo baseado na mecânica do dano contínuo para representar o comportamento de materiais que apresentam diferentes respostas quando solicitados à tração ou à compreensão. obtem-se uma representação constitutiva através da composição de modelos simples e específicos para tratar cada tipo de solicitação. Este modelo combinado é capaz inclusive de lidar com carregamentos alternados (tração e compreensão), envolvendo fechamento e reabertura de fissuras existentes. Para modelar o comportamento em compreensão emprega-se o modelo constitutivo que tem como critério de degradação o segundo invariante do tensor de tensão desviador (critério de Von Mises ou J2). Para simular o aparecimento de fissuras de tração, usa-se o modelo de dano com critério de degradação baseado na energia de deformação da parte positiva do tensor efetivas. A integração dos modelos é feita com base em tensões efetivas associadas a duas escalas distintas (escala grosseira e refinada). O modelo é apto para representar a formação de descontinuidades no campo de deslocamento (descontinuidades fortes) em materiais quase-frágeis. Nesse caso, a região de localização de deformação (zona de processo da fatura) pode ser descrita pelo modelo de dano combinado, com lei de abrandamento de tensões (softening) exponencial, que estabelece dissipação compatível com a energia de fratura. A região contínua pode ser descrita pelo modelo de dano J2, com parâmetros ajustados com base no comportamento não linear à compreensão. Valida-se o modelo proposto mediante testes básicos, focando a capacidade do modelo em representar os principais aspectos do comportamento de materiais quase-frágeis. A aplicabilidade do modelo é demonstrada através do estudo da capacidade de rotação plástica de vigas de concreto armado, confrontando-se os resultados numéricos com os experimentais / A combined constitutive model based on the Continuum Damage Mechanics (CDM) is presented to represent the nonlinear behavior of quasi-brittle materials, which present different response when subjected to tension or compreession. The constitutive model is a composition of two simple and specific models designed to treat each type of behavior. The combined model is able to deal with alternating load (tension-compression), involving formation, closure and reopening cracks. To model the compressive behavior, a degradation criterion based on the second invariant of the deviatoric part of the effective stress tensor (Von Miser or J2 criterion) is used. To simulate cracking, a damage model with degradation criterion based on the strain energy associated to the positive part the effective stress tensor is adopted. The combination of the models is made on the basis of the effective stresses associated to two distinct scales (coarse and fine scales) The model is able to represented the formation of discontinuities in the displacement field (strong discontinuities) for quasi-brittle materials. The region of strain localization (fracture process zone) is described by a softening law which establishes dissipation energy compatible with the fracture energy. The continuous region is described by the J2 damage model, with parameters ajusted to describle the compressive nonlinear behavior in compression. Some basic tests are performed to asses the ability of the model to represent the main aspects of the behavior of quasi-brittle materials. The applicability of the model is demonstrated by the study of the plastic rotation capacity of reinforced concrete beams, comparing the numerical responses with the experimental ones
4

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
5

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
6

Endommagement non-local, interactions et effets d’échelle / Non-local damage, interactions and size effect

Rojas Solano, Laura Beatriz 07 December 2012 (has links)
Cette thèse porte sur la description du processus de fissuration du béton soumis à des sollicitations mécaniques. L'objectif principal est d'améliorer la description macroscopique à l'aide d'un modèle continu. Un modèle décrivant de façon cohérente le comportement à la rupture du béton devrait au moins représenter : (i) la transition continu/discret et l'effet d'écran induit par une macrofissure, (ii) la discontinuité du déplacement, (iii) l'interaction entre le processus de fissuration et un bord libre (iv) il doit aussi être capable de reproduire la réponse mécanique obtenue expérimentalement. Dans un premier temps, nous avons fait une analyse comparative entre le modèle d'endommagement non-local classique et différents modèles continus améliorés proposés dans la littérature. Des outils de comparaison ont été proposés pour cette analyse : (i) du point de vue numérique, deux exemples considérant la rupture dynamique d'une barre (barre en traction et test d'écaillage) et (ii) du point de vue expérimental, une base de données issue d'une série d'essais sur des poutres homothétiques entaillées et non-entaillées en flexion trois points. Nous avons conclu que seule une combinaison entre différentes formulations peut rendre compte de tous les mécanismes mis en jeu lors du processus de fissuration. Elle inclue à la fois la façon dont l'information non-locale est transmise, la croissance de défauts et la description des effets de bord. Nous avons mis en évidence que son implémentation 2D ou 3D reste complexe et donc la comparaison avec des données expérimentales s'avère impossible. Dans un deuxième temps, nous avons choisi de changer l'échelle d'analyse pour connaitre en détail les mécanismes ayant lieu au sein de la mésostructure du béton (pâte, granulat, interface) à l'aide d'un modèle mésoscopique basé sur des éléments lattice. Cette analyse a permis de conclure que la prise en compte des interactions entre les composants de la mésostructure du béton fournit des résultats numériques plus proches de la réalité que ceux obtenus avec le modèle non-local macroscopique classique. Le mésomodèle est capable de représenter aussi bien la charge maximale (effet d'échelle) que la phase adoucissante pour toutes les tailles de poutre et pour toutes les géométries d'entaille. Nous avons transposé la prise en compte des interactions de l'échelle mésoscopique à l'échelle macroscopique au travers de la fonction poids d'un nouveau modèle non-local. Elle est estimée en décrivant le matériau comme étant un ensemble d'inclusions qui interagissent entre elles lors du chargement. Ces inclusions sont dilatées élastiquement et successivement afin de caractériser le transfert d'information au sein du matériau et de reconstruire la fonction poids du modèle proposé. Ce nouveau modèle est capable de décrire la transition continu/discret et l'effet d'écran, la discontinuité du déplacement et de retrouver un effet de bord cohérent avec les résultats de la micromécanique. Son implémentation en 2D est présentée et les premiers résultats de calculs illustrent la démarche. Finalement, nous revenons sur la modélisation mésoscopique du comportement du béton. Sa richesse en information peut conduire à une compréhension plus fine du processus de fissuration et de la création puis l'évolution de la zone d'élaboration. / This work focuses on the description of the process of cracking of concrete subjected to mechanical stresses. The main objective is to improve the understanding of the mechanisms involved using a continuous macroscopic model. A model describing consistently the fracture behavior of concrete should at least represent: (i) the continuous / discrete transition and the shielding effect induced by a macrocrack, (ii) the discontinuity of displacement, (iii) the interaction between the cracking process and a free boundary, (iv) it must also be able to reproduce the mechanical response obtained experimentally. At first, we made a comparative analysis of the classical non-local damage model and others improved continuous models proposed in the literature. Comparison tools have been proposed for this analysis: (i) from a numerical point of view, two examples considering the dynamic rupture of a bar (tensile test and spalling test) and (ii) from an experimental point of view, a database obtained from three-point bending test on notched and unnotched geometrically similar beams made from the same concrete formulation. We found that only a combination of this formulations may account for the different mechanisms involved in the process of cracking. It includes the transmission of the non-local information, the growing of voids and the description of boundary effects. We shown that its implementation in 2D or 3D remains complex and thus comparison with experimental results are impossible. In a second step, we decided to change the scale of analysis to precise the mechanisms which are taking place within the mesostructure of concrete using a mesomodel based on lattice elements. This analysis shown that since the mesomodel intrinsically took into account the interactions evolution within the structure, it is able to provide relevant results when classical macroscopic non-local models failed. It is able to represent both the maximum load (size effect) and the softening regime whatever the beam size or the pre-notch geometry. In addition, we proposed a new non-local framework where the interactions were upscale from the mesoscale to the macroscale through a new weight function. This function is estimated by describing the material as a set of inclusions that interact upon loading. These inclusions are successively elastically dilated to characterize the transfer of information within the material and rebuild the non-local weight function. This new model is able to describe the continuous / discrete transition, the shielding effect and the discontinuity of displacement. The model has been implemented in 2D in a finite element code and first results shown its capabilities to reproduce experimental results in term of maximum loads. In a third step, the richness of the mesoscopic approach has been used to describe precisely the local process of failure in term of fracture process zone evolution.
7

Uso de descontinuidades fortes na simulação de problemas de fratura

Silva, Cristiane Zuffo da January 2015 (has links)
A formação e propagação de fissuras é um fenômeno observado em diversos materiais utilizados na engenharia, como concreto, metais, cerâmicas e rochas. Tendo em vista a grande influência que fissuras têm no comportamento global da estrutura o objetivo deste trabalho consiste na implementação de um modelo de fissura com descontinuidades fortes incorporadas a fim de analisar o processo de fratura em materiais quase-frágeis. A descontinuidade no campo de deslocamentos (descontinuidade forte) é representada através da introdução de graus de liberdade adicionais no interior do elemento finito, sendo esta abordagem denominada enriquecimento elementar (E-FEM). Nestes modelos a fissura pode se propagar em qualquer direção dentro do elemento finito, evitando a necessidade de redefinição da malha em cada etapa, além de fornecer resultados relativamente independentes da malha de elementos finitos utilizada. Por serem internos a cada elemento finito, os graus de liberdade adicionais podem ser eliminados da solução global por condensação estática. Desta forma as descontinuidades são definidas em nível de elemento e o modelo pode ser facilmente implementado em códigos computacionais existentes. O modelo implementado foi proposto por Dvorkin, Cuitiño e Gioia (1990), o qual pertence à classe de modelos com formulação assimétrica estaticamente e cinematicamente consistente (SKON). Esta formulação é caracterizada por garantir o movimento de corpo rígido entre as partes do elemento além de assegurar a continuidade de tensões na linha de fissura, resultando numa matriz de rigidez assimétrica. Diferentes relações constitutivas podem ser utilizadas para descrever o comportamento das regiões com e sem fissura. Portanto, para a região não fissurada, utilizouse um modelo constitutivo elástico linear e para a região fissurada foi analisada a performance de dois modelos constitutivos distintos: linear e exponencial. A capacidade de representar o comportamento de elementos estruturais fissurados foi ilustrada através de exemplos de tração e flexão comparados com outros modelos de fissura existentes e com resultados experimentais. Em relação aos modelos constitutivos para a linha da fissura, o modelo linear não se mostrou adequado por superestimar as tensões de pico além de apresentar um ramo de amolecimento mais frágil. Já o modelo exponencial mostrou-se bastante eficiente representando de forma correta o comportamento de materiais quase-frágeis. / The formation and propagation of cracks is a phenomenon observed in many materials used in engineering, such as concrete, metals, ceramics and rocks. In view of the influence of cracks in the global behavior of the structure, the aim of this work is the implementation of an embedded strong discontinuity model in order to analyze the fracture process in quasi-brittle materials. The discontinuity in the displacement field (strong discontinuity) is represented by the introduction of additional degrees of freedom within the finite element. This approach is called elemental enrichment (E-FEM). The embedded models allow the propagation of crack in any direction within the finite element, avoiding the need of remeshing and providing objective results (mesh independent). The additional degrees of freedom are introduced into the finite element, then these degrees can be eliminated from the global solution by static condensation and the model can be easily implemented in existent computational codes. The model used here was proposed by Dvorkin, Cuitiño and Gioia (1990), which belongs to the statically and kinematically optimal non-symmetric (SKON) formulation. In this formulation, the kinematics that allows for relative rigid body motion and the enforcement of the traction continuity are introduced at element level, resulting a non-symmetric formulation. Different constitutive relations can be used to describe the behavior of the zones with and without cracks. For the zone without cracks it was used a linear elastic model and for the cracked zone it was analyzed the behavior of two different constitutive models: linear and exponential. The ability of the model to represent the behavior of cracked structural elements was illustrated by bending and tensile tests and the results were compared with numerical and experimental data. Regarding the constitutive models for the fracture zone, it was concluded that the linear model was not suitable because it overestimated the maximum stress and promoted a britller softening. In contrast, the exponential model proved to be very efficient to represent the behavior of quasi-brittle materials.
8

Un modèle lattice pour simuler la propagation de fissures sous l’effet d’une injection de fluide dans un milieu hétérogène quasi-fragile

Lefort, Vincent 04 July 2016 (has links)
Cette thèse vise à développer un modèle numérique de type lattice permettant de simuler la propagation de fissures sous l’effet d’une injection de fluide dans un milieu hétérogène quasi-fragile. Si la finalité de l'étude concerne l'étude de matrices rocheuses naturelles, dans les différentes parties du manuscrit détaillée ci-après et dans un souci de validation, le modèle a été régulièrement confronté à des résultats expérimentaux obtenus sur des matériaux cimentaires similaires à des roches naturelles en termes de comportements mécaniques et de transport mais présentant des hétérogénéités mieux contrôlées. La première partie du document est dédiée à l'étude du processus de fissuration caractéristique des matériaux quasi-fragiles présentant une zone d'élaboration. Un outil d'analyse statistique basé sur les fonctions de Ripley et permettant d'extraire une longueur caractéristique à partir d'un nuage de points -- lieux d'un endommagement mécanique -- et présenté. Il est ensuite utilisé dans le cadre d'essais numériques et expérimentaux de rupture par flexion 3 points sur des éprouvettes de bétons. Les résultats montrent que le modèle numérique de type lattice est capable de rendre compte à la fois du processus global de fissuration mais également du processus local de fissuration. Par ailleurs, cet outil permet également de montrer l'influence du mode de sollicitation sur le développement de l'endommagement au sein d'une structure. La deuxième partie du document présente une loi de comportement élasto-plastique endommageable représentative du comportement de joints. L'originalité du modèle réside dans le couplage entre l'endommagement sous sollicitation normale et la plasticité sous sollicitation tangentielle. Cette nouvelle loi permet de reproduire correctement des résultats d'essais de cisaillement indirects effectués sur des joints de plâtre séparant des épontes en mortier alors qu'un modèle de Mohr-Coulomb classique ne le permet pas. La troisième partie est dédiée à l'introduction d'un couplage hydromécanique complet dans le modèle lattice utilisé précédemment. Le couplage hydromécanique est introduit au travers du comportement poromécanique du milieu basé sur une description mécanique-hydraulique duale et intrinsèque du modèle lattice. La contrainte totale fait le lien entre la contrainte mécanique du lattice mécanique et la pression de pore du lattice hydraulique au travers du coefficient du Biot du milieu alors que la perméabilité locale pilotant le gradient de pression hydraulique est indexée sur les ouvertures locales de fissures estimées au travers du lattice mécanique. Les résultats obtenus par ce modèle hydro-mécanique dual ont été confrontés à des solutions analytiques données dans la littérature pour des fissures de type "bi-wings", et il est montré que les deux approches sont cohérentes pour une fissure parfaitement rectiligne. Après les différentes étapes de validation du modèle présentées dans les parties précédentes, la quatrième et dernière partie est dédiée à la simulation numérique du couplage hydromécanique sous-jacent à la propagation libre d'une fissure propageant sous l'effet d'une injection de fluide et de son interaction avec un joint rocheux naturel. Les trajets de fissuration, non maillés a priori, et les profils de pression au sein de la matrice poreuse sont obtenus et comparés en fonction de l'inclinaison du joint rocheux. Par ailleurs, le traitement statistique concernant les lieux d'endommagement développé en première partie est repris ici afin de caractériser l'évolution des longueurs de corrélation entre point s'endommageant au cours de la propagation de la fissure et de son interaction avec le joint. Il est montré que le modèle hydromécanique lattice permet de représenter différent mécanismes de ré-initiation de fissure à partir d'un joint suivant son inclinaison. / This research study aims at developing a lattice-type numerical model allowing the simulation of crack propagation under fluid injection in a quasi-brittle heterogeneous medium. This numerical tool will be used to get a better understanding of initiation and propagation conditions of cracks in rock materials presenting natural joints where the coupling between mechanical damage and fluid transfer properties are at stake. If the final goal of the study does concern natural rocks, the model has been validated by different comparisons with experimental results obtained on cementitious materials mimicking natural rocks in term of mechanical and transport behaviours but presenting heterogeneities which are better controlled. The first part of the manuscript presents a general state of the art. The second part of the manuscript is dedicated to the study of crack propagation in quasi-brittle materials where a significant fracture process zone is evolving upon failure. Only the solid phase is studied here and a statistical tool based on Ripley’s functions is adapted in order to extract a characteristic length representative of the correlations appearing between a set of point undergoing mechanical damage. This tool is then used in the context of numerical and experimental fracture tests on 3 point bending concrete beams. The results show that the lattice-type numerical model is able to capture the global fracture process – in term of force vs. crack opening mouth displacement – but also the local fracture process – in term of dissipated energy and correlation length evolution between damage points. Moreover, this statistical tool shows how the solicitation mode may influence the development of damage within a structure. The third part presents a new elasto-plastic damage constitutive law for joint modelling. The originality of the model lies in the coupling between mechanical damage under normal strain and plasticity under tangential strain. This new constitutive law is able to reproduce indirect shear experimental tests performed on mortar specimens presenting a plaster joint where a classical Mohr-Coulomb criterion fails. The fourth part is dedicated to the representation of the full hydro-mechanical coupling within the lattice-type numerical model. The hydro-mechanical coupling is introduced through a poromechanical framework based on the intrinsic and dual hydro-mechanical description of the lattice model, which is based on a "hydraulic" Voronoï tessellation and a "mechanical" Delaunay triangulation. The total stress links the mechanical stress and the pore pressure through the Biot coefficient of the medium whereas the local permeability, which drives the hydraulic pressure gradient, depends on the local crack openings. The numerical results are compared with analytical solutions from the literature for "bi-wings" shape cracks and it is shown that both approaches present similar results for a perfect straight crack. Once the lattice-model has been successfully validated within the former parts of the manuscript, its fifth and last part is dedicated to the numerical simulation of the fully hydro-mechanical coupling problem of a free crack propagation due to fluid injection and its interaction with a natural joint in an heterogeneous rock medium. Different crack paths, which are not pre-meshed a priori, and different pressure profiles are obtained and compared for different joint inclinations. Finally, our statistical tool, which has been primarily developed for the analysis of the failure behaviour of the solid phase, is used to characterise the evolution of correlation lengths between points undergoing damage upon the crack propagation and its interaction with a natural joint. It is shown that the hydro-mechanical lattice model is able to represent different mechanism of crack stop and restart from a joint depending on its inclination.
9

Um modelo constitutivo de dano composto para simular o comportamento de materiais quase-frágeis /

Rodrigues, Eduardo Alexandre. January 2011 (has links)
Resumo: No presente trabalho desenvolve-se um modelo constitutivo baseado na mecânica do dano contínuo para representar o comportamento de materiais que apresentam diferentes respostas quando solicitados à tração ou à compreensão. obtem-se uma representação constitutiva através da composição de modelos simples e específicos para tratar cada tipo de solicitação. Este modelo combinado é capaz inclusive de lidar com carregamentos alternados (tração e compreensão), envolvendo fechamento e reabertura de fissuras existentes. Para modelar o comportamento em compreensão emprega-se o modelo constitutivo que tem como critério de degradação o segundo invariante do tensor de tensão desviador (critério de Von Mises ou J2). Para simular o aparecimento de fissuras de tração, usa-se o modelo de dano com critério de degradação baseado na energia de deformação da parte positiva do tensor efetivas. A integração dos modelos é feita com base em tensões efetivas associadas a duas escalas distintas (escala grosseira e refinada). O modelo é apto para representar a formação de descontinuidades no campo de deslocamento (descontinuidades fortes) em materiais quase-frágeis. Nesse caso, a região de localização de deformação (zona de processo da fatura) pode ser descrita pelo modelo de dano combinado, com lei de abrandamento de tensões (softening) exponencial, que estabelece dissipação compatível com a energia de fratura. A região contínua pode ser descrita pelo modelo de dano J2, com parâmetros ajustados com base no comportamento não linear à compreensão. Valida-se o modelo proposto mediante testes básicos, focando a capacidade do modelo em representar os principais aspectos do comportamento de materiais quase-frágeis. A aplicabilidade do modelo é demonstrada através do estudo da capacidade de rotação plástica de vigas de concreto armado, confrontando-se os resultados numéricos com os experimentais / Abstract: A combined constitutive model based on the Continuum Damage Mechanics (CDM) is presented to represent the nonlinear behavior of quasi-brittle materials, which present different response when subjected to tension or compreession. The constitutive model is a composition of two simple and specific models designed to treat each type of behavior. The combined model is able to deal with alternating load (tension-compression), involving formation, closure and reopening cracks. To model the compressive behavior, a degradation criterion based on the second invariant of the deviatoric part of the effective stress tensor (Von Miser or J2 criterion) is used. To simulate cracking, a damage model with degradation criterion based on the strain energy associated to the positive part the effective stress tensor is adopted. The combination of the models is made on the basis of the effective stresses associated to two distinct scales (coarse and fine scales) The model is able to represented the formation of discontinuities in the displacement field (strong discontinuities) for quasi-brittle materials. The region of strain localization (fracture process zone) is described by a softening law which establishes dissipation energy compatible with the fracture energy. The continuous region is described by the J2 damage model, with parameters ajusted to describle the compressive nonlinear behavior in compression. Some basic tests are performed to asses the ability of the model to represent the main aspects of the behavior of quasi-brittle materials. The applicability of the model is demonstrated by the study of the plastic rotation capacity of reinforced concrete beams, comparing the numerical responses with the experimental ones / Orientador: Osvaldo Luís Manzoli / Coorientador: André Luís Gamino / Banca: Leonardo José do Nascimento Guimarães / Banca: Edson Antonio Capello Sousa / Mestre
10

Computational technology for damage and failure analysis of quasi-brittle materials

Wang, Xiaofeng January 2015 (has links)
The thesis presents the development and validation of novel computational technology for modelling and analysis of damage and failure in quasi-brittle materials. The technology is demonstrated mostly on concrete, which is the most widely used quasi-brittle material exhibiting non-linear behaviour. Original algorithms and procedures for generating two-dimensional (2D) and three-dimensional (3D) heterogeneous material samples are developed, in which the mesoscale features of concrete, such as shape, size, volume fraction and spatial distribution of inclusions and pores/voids are randomised. Firstly, zero-thickness cohesive interface elements with softening traction-separation relations are pre-inserted within solid element meshes to simulate complex crack initiation and propagation. Monte Carlo simulations (MCS) of 2D and 3D uniaxial tension tests are carried out to investigate the effects of key mesoscale features on the fracture patterns and load-carrying capacities. Size effect in 2D concrete is then investigated by finite element analyses of meso-structural models of specimens with increasing sizes. Secondly, a 3D meso-structural damage-plasticity model for damage and failure analysis of concrete is developed and applied in tension and compression. A new scheme for identifying interfacial transition zones (ITZs) in concrete is presented, whereby ITZs are modelled by very thin layers of solid finite elements with damage-plasticity constitutive relations. Finally, a new coupled method named non-matching scaled boundary finite element-finite element coupled method is proposed to simulate crack propagation problems based on the linear elastic fracture mechanics. It combines the advantage of the scaled boundary finite element method in modelling crack propagation and also preserves the flexibility of the finite element method in re-meshing. The efficiency and effectiveness of the developed computational technology is demonstrated by simulations of crack initiation and propagation problems.

Page generated in 0.0465 seconds