• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyse théorique et numérique de l'endommagement par micro-fissuration descomposites à matrice quasi-fragile / Theoretical and numerical analysis of damage by micro-cracking composite materials of quasi-brittle matrix

Dib, Dayana 22 October 2015 (has links)
Le problème initial traité dans cette thèse relève du cadre général de la modélisation des tunnels profonds. Pour cela, on a adopté l'approche basée sur la mécanique linéaire de la rupture. L'étude s'est appuyée sur le critère mixte de Leguillon. Suite à cette étude, on a pu tirer que ce n'est pas le critère mixte qui est insuffisant mais plutôt la façon d'aborder le problème. D'où le passage à la prise en compte de l'hétérogénéité du matériau constitutif et la possibilité d'amorçage d'une fissure sous une contrainte de compression. Une première approche a été entreprise par l'étude d'une bicouche périodique sous contrainte de compression verticale. La couche de grande raideur s'est apparue le siège d'une traction transversale. Effectivement la possibilité d'amorçage d'une fissure est tout à fait probable grâce toujours à la vérification des critères d'énergie et de contrainte. Une deuxième approche consistait à observer au plus près la microstructure du matériau ; on a considéré le problème d'une inclusion elliptique dans une matrice infinie. Par la méthode des variables complexes et la technique de la transformation conforme, on a analysé le champ de contrainte autour de l'inclusion et on a mis en évidence la présence d'une traction qui dépend fortement des paramètres choisis. Par la méthode des éléments finis étendus, on a calculé la variation de l'énergie potentielle mise en jeu par la création d'une fissure. Par une démarche semblable à l'approche précédente, à savoir la vérification des critères d'énergie et de contrainte, on a conclu à la possibilité d'amorçage d'une fissure. Mots clefs : mécanique linéaire de la rupture, critère mixte de Leguillon, énergie potentielle, taux de restitution d'énergie, méthode des éléments finis étendus, bicouche périodique, méthode des variables complexes / The initial problem treated in this thesis falls within the general framework of modeling deep tunnels. For this reason, the approach based on linear fracture mechanics was adopted. The study was based on the mixed criterion of Leguillon. Following This study, the mixed criterion was not insufficient but the way to approach the problem was. Where the transition to the consideration of the heterogeneity of the material component and the possibility of initing a crack under a compressive stress. A first approach was undertaken the study of periodic bilayer under the stress of vertical compression. The layer of the highest stiffness has appeared the seat of a transverse traction. Indeed the possibility to initiate a crack is quite likely always through the verification of the energy and the stress criteria. A second approach was to observe more closer the microstructure of the material; we have considered the problem of elliptic inclusion in an infinite matrix. By the method of complex variables and the technique of conformal mapping, we analyzed the stress field around the inclusion and were revealed the presence of a traction which depends strongly of the selected parameters. By the extended finite element method, we calculated the variation of the potential energy involved by creating a fracture. In a similar approach to the previous one, namely verification of the energy and the stress criteria, we concluded the possibility of initiating a crack. Keywords: linear fracture mechanics, mixed criterion of Leguillon, potential energy, energy release rate, extended finite element method, periodic bilayer, method of complex variables
22

Comportement mécanique des matériaux quasi-fragiles sous sollicitations cycliques : de l’expérimentation numérique au calcul de structures. / Mechanical behavior of quasi-brittle materials under cyclic loadings : from virtual testing to structural simulations

Vassaux, Maxime 13 March 2015 (has links)
Les modèles de comportement mécanique, dits macroscopiques, sont développés à la fois pour leur légèreté, permettant le calcul d’éléments structuraux pouvant atteindre d’importantes dimensions, et pour leur finesse de représentation des phénomènes mécaniques observés par le matériau à des échelles plus fines. Le développement de tels modèles est ici effectué dans le cadre de la sollicitation sismique, donc des chargements cycliques alternés, appliquée à des ouvrages en matériaux quasi-fragiles, et plus précisément en béton. À ce jour, les modèles macroscopiques, effectivement applicables au calcul de structures, et représentatifs du comportement cyclique du béton sont encore rares. En conséquence de la complexité du problème de fissuration à homogénéiser, les modèles macroscopiques existants affichent une robustesse limitée ou ne permettent pas de reproduire l’ensemble des phénomènes mécaniques observés par le matériau. Une des barrières à la résolution de ces deux problématiques est le manque de données expérimentales relatives aux phénomènes à modéliser. En effet, en cause de la difficulté technique de les réaliser, peu de résultats d’essais cycliques alternés sur du béton sont disponibles dans la littérature.
 Une démarche d’expérimentation numérique a donc été élaborée sur la base d’un modèle fin du matériau, dit microscopique, capable de fournir les résultats nécessaires à la formulation et à l’identification d’un modèle macroscopique. Dans le modèle microscopique le matériau est considéré comme une structure à part entière, il a été développé afin de ne nécessiter qu’une quantité réduite de résultats d’essais, maîtrisés, pour être mis en oeuvre. Le modèle microscopique, un modèle particulaire lattice, a été développé sur la base d’un modèle lattice existant, enrichi pour être en mesure de simuler le comportement des matériaux quasi-fragiles sous chargements multi-axiaux et cycliques. Le modèle microscopique a alors été validé en tant qu’outil d’expérimentation numérique, et exploité afin d’établir les équations constitutives du modèle macroscopique fondées sur les théories de l’endommagement et de la plasticité. La régularité de la relation de comportement proposée, intégrant un effet unilatéral progressif, a notamment été garantie par l’utilisation d’un modèle d’élasticité non-linéaire. Le modèle macroscopique a finalement été calibré, entièrement, à l’aide du modèle microscopique, et mis à l’oeuvre dans la simulation de la réponse d’un voile en béton armé soumis à un chargement de cisaillement cyclique alterné. Cette simulation a permis de mettre en avant la robustesse numérique du modèle développé, ainsi que la contribution significative du comportement uni-axial cyclique alterné du béton à l’amortissement de telles structures. / Macroscopic mechanical behavior models are developed for their light computational costs, allowing the simulation of large structural elements, and the precise description of mechanical phenomena observed by the material at lower scales. Such constitutive models are here developed in the seismic solicitation framework, therefore implying cyclic alternate loadings at the material scale, and applied to civil engineering buildings, often made of concrete, or more generally of quasi-brittle materials. To date, macroscopic models applicable to structural computations, while representing the cyclic mechanical behavior are rare. In consequence of the intricacy of the fracture processes to homogenize, macroscopic constitutive models either do not present sufficient robustness or miss on important phenomena. One of the limitations to the resolution of this issue is the lack of experimental data. Indeed, because of the complexity of the experiments to set up, few results on alternate cyclic tests on concrete are available in the literature.A virtual testing approach has therefore been established on a microscopic model of the material, able to provide results needed to the formulation and the calibration of a macroscopic model. In the microscopic model, the material is considered as structure itself, it is developed so as to only necessitate a reduced amount of results from controlled experimental tests, in order to be used. The microscopic model, a lattice discrete element model, has been developed on the basis of an existing lattice model and extended to the simulation of multi-axial and cyclic loadings. The microscopic model has then been validated as a virtual testing tool and used to establish equations of the macroscopic model, on the basis of damage and plasticity theories. The consistency of the proposed constitutive relation, embedding progressive unilateral effect, has been achieved using non-linear elasticity. The macroscopic model has finally been calibrated, entirely with the microscopic model, and employed to simulate the response of a reinforced concrete wall under alternate shear loading. This simulation has served to showcase the numerical robustness of the proposed model, as well as the significant contribution of the uni-axial alternate behavior of concrete to the structural damping of such structures.
23

Simulace lomové zkoušky ve stavebnictví / Simulation of Fracture Tests in Civil Engineering

Bordovský, Gabriel January 2017 (has links)
In this thesis, a program for fracture test in civil engineering has been optimized. The simulation is used for a validation of the fracture characteristics for blocks of construct material used for historic buildings reconstructure. This thesis illustrates the possibilities of an effective usage of the processor’s potential without the loss of the output quality. The individual parts of the simulation are analyzed and this thesis proposes for the critical sections some possible optimizations such as vectorization or parallel processing. The techniques used in this thesis may be used on similar computing problems and help shorten the required runtime. The prototype of the simulation was able to process the simulation in 7.7 hours. Optimized version is capable to process the same simulation in 2.1 hours on one core or 21 minutes on eight cores. The parallel optimized version is 21 times faster than the prototype.
24

R-Curve behaviour and size effect of a quasibrittle material : wood / Comportement Courbe-R et effet d’échelle d’un matériau quasi-fragile : le bois

Dourado, Nuno Miguel 18 December 2008 (has links)
Ce travail concerne des expériences mécaniques, des analyses numériques et des modélisations analytiques de la rupture cohésives (Mode I), vis-à-vis de l’étude du comportement mis en évidence par la courbe de Résistance (Courbe-R) et l’effet d’échelle de structures entaillées en bois massif. Des expériences de fissuration sont combinées à des analyses numériques pour déterminer les propriétés de rupture au moyen d’une procédure appelée Théorie de la Mécanique de la Rupture Linéaire Élastique équivalente (TMRLE), basée sur la complaisance de la structure. La courbe-R, obtenue à partir des expériences, selon une méthode de correction du poids propre, montre l’existence d’un domaine endommagé (Zone de Processus de Rupture) de taille non négligeable se développant en fond de fissure. Dans des conditions de fissuration stationnaire, ce domaine atteint une taille critique, et l’énergie nécessaire pour faire propager la fissure avec ce domaine endommagé (par unité de surface de rupture), reste constante. Le taux de libération de l’énergie de fissuration ainsi attendu, joue un rôle important en Mécanique de la Rupture, car il est possible simuler le comportement quasi-fragile du matériau en combinaison avec les autres propriétés de cohésion. La loi d’effet d’échelle de Bažant, utilisée pour prévoir l’influence de la taille sur la contrainte nominale, est estimée à partir de la réunion de deux comportements asymptotiques réalisés sur de petites tailles (Analyse limite ou RdM) et des grandes tailles. Une procédure analytique est présentée pour évaluer le comportement asymptotique additionnel exhibé par la contrainte nominale dans le régime intermédiaire, de façon plus exacte. Une validation numérique est présentée, et l’information expérimentale vient confirmer ce comportement asymptotique. / This work concerns the mechanical testing, numerical analysis and modelling of cohesive fracture (Mode I) on the purpose to study the Resistance-curve behaviour and the size effect in wooden notched structures. The mechanical testing is combined with the numerical analysis to evaluate fracture properties by means of an equivalent LEFM approach based on the structure compliance. The Resistance-curve being revealed from the experiments, by means of a self-weight compensation method, correction puts into evidence that a non-negligible damaged domain (Fracture Process Zone) is under development in the crack front during the loading process. This being the case, among other fracture parameters issued from the Resistance-curve, the critical (asymptotic) energy release rate is determined, turning possible to use it in combination with other cohesive crack properties in the crack modelling (in Mode I). Thus, for a given geometry it is possible to monitor the critical dimension being revealed by the Fracture Process Zone (FPZ) during the crack propagation. The well known Bažant’s size effect law provides the scaling of the nominal strength through the asymptotic matching performed both on the small (Strength Theory) and on the large (LEFM) structure sizes. An analytical procedure is proposed to determine an additional asymptotic regime in the intermediate size range through a more accurate manner. Numerical validations of the proposed procedure are made and experimental data is presented revealing the scaling of the nominal strength through an envelop of values.
25

Modélisation double-échelle de la rupture des roches : influence du frottement sur les micro-fissures / Double-scale modelling of failure in rocks : influence of micro-cracks friction

Wrzesniak, Aleksandra 14 December 2012 (has links)
Propagation des fissures microscopiques, est représentée par des variables d’endommagement. L’évolution de la variable d’endommagement est généralement formulée sur la base d’observations expérimentales. De nombreux modèles phénoménologiques d’endommagement ont été proposés dans la littérature. L’objet de cette thèse est de développer une nouvelle procédure pour obtenir des lois d’évolution macroscopique d’endommagement,dans lesquelles l’évolution de l’endommagement est entièrement déduite de l’analyse de la microstructure. Nous utilisons une homogénéisation basée sur des développements asymptotiques pour décrire le comportement global à partir de la description explicite d’un volume élémentaire microfissuré.Nous considérons d’une part un critère quasi-fragile (indépendant du temps) puis un critère sous-critique(dépendant du temps) pour décrire la propagation des microfissures. De plus, le frottement entre les lèvres des microfissures est pris en compte. Une analyse énergétique est proposée, conduisant à une loi d’évolution d’endommagement qui intègre une dégradation de la rigidité, un adoucissement du comportement du matériau, des effets de taille et d’unilatéralité, mettant en avant un comportement différent à la rupture en contact avec et sans frottement. L’information sur les micro-fissures est contenue dans les coefficients homogénéisés et dans la loi d’évolution de l’endommagement. Les coefficients homogénéisés décrivent la réponse globale en présence de micro-fissures (éventuellement statiques), tels qu’ils sont calculées avec la(quasi-) solution microscopique statique. La loi d’endommagement contient l’information sur l’évolution des micro-fissures, résultant de l’équilibre énergétique dans le temps pendant la propagation microscopique.La loi homogénéisée est formulée en incrément de contrainte. Les coefficients homogénéisés sont calculées numériquement pour des longueurs de fissures et des orientations différentes. Cela permet la construction complète des lois macroscopiques. Une première analyse concerne le comportement local macroscopique, pour des trajets de chargement complexes, afin de comprendre le comportement prédit par le modèle à deux échelles et l’influence des paramètres micro structuraux, comme par exemple le coefficient de frottement. Ensuite, la mise en œuvre en éléments finis des équations macroscopiques est effectuée et des simulations pour différents essais de compression sont réalisées. Les résultats des simulations numériques sont comparés avec les résultats expérimentaux obtenus en utilisant un nouvel appareil triaxial récemment mis au point au Laboratoire 3SR à Grenoble (France). / In continuum damage models, the degradation of the elastic moduli, as the results of microscopic crackgrowth, is represented through damage variables. The evolution of damage variable is generally postulatedbased on the results of the experimental observations. Many such phenomenological damage modelshave been proposed in the literature. The purpose of this contribution is to develop a new procedurein order to obtain macroscopic damage evolution laws, in which the damage evolution is completelydeduced from micro-structural analysis. We use homogenization based on two-scale asymptotic developmentsto describe the overall behaviour starting from explicit description of elementary volumes withmicro-cracks. We consider quasi-brittle (time independent) and sub-critical (time dependent) criteria formicro-cracks propagation. Additionally, frictional contact is assumed on the crack faces. An appropriatemicro-mechanical energy analysis is proposed, leading to a damage evolution law that incorporates stiffnessdegradation, material softening, size effect, and unilaterality, different fracture behaviour in contactwithout and with friction. The information about micro-cracks is contained in the homogenized coefficientsand in the damage evolution law. The homogenized coefficients describe the overall response inthe presence of (possibly static) micro-cracks, as they are computed with the (quasi-) static microscopicsolution. The damage law contains the information about the evolution of micro-cracks, as a result ofthe energy balance in time during the microscopic propagation. The homogenized law is obtained in therate form. Effective coefficients are numerically computed for different crack lengths and orientations.This allows for the complete construction of the macroscopic laws. A first analysis concerns the localmacroscopic behaviour, for complex loading paths, in order to understand the behaviour predicted bythe two-scale model and the influence of micro structural parameters, like for example friction coefficient.Next, the FEM implementation of the macroscopic equations is performed and simulations for variouscompression tests are conducted. The results of the numerical simulations are compared with the experimentalresults obtained using a new true-triaxial apparatus recently developed at the Laboratory 3SRin Grenoble (France).
26

Simulation of time-dependent crack propagation in a quasi-brittle material under relative humidity variations based on cohesive zone approach : application to wood / Simulation de la propagation de fissures dans un matériau quasifragile soumis à des variations d’humidité relative selon une approche de zone cohésive : application au bois

Phan, Ngoc Anh 20 January 2016 (has links)
Cette thèse est consacrée à la simulation du comportement à la rupture de bois sous des chargements à long terme et sous des conditions d'Humidité Relatives (HR) de l'air variables. Il est connu que le bois est un matériau fortement hygroscopique, ses propriétés mécaniques et de rupture sont en effet très dépendantes de sa teneur en eau. En outre, la stabilité d'une fissure existante dans un élément structural peut être fortement influencée parles variations, en particulier brusques, d'humidité relative qui peut conduire à la rupture inattendue de l'élément.L'approche thermodynamique proposée intègre l'effet de mécanosorption dans l'expression analytique de la déformation, en découplant les déformations mécaniques et celles dues au comportement mécanosorptif du matériau. En outre, la rupture quasi-fragile du matériau boisest traduite par un modèle de zone cohésive dont les paramètres de cohésion sont fonctions de la teneur en eau afin de simuler l’effet de l'humidité sur les propriétés de rupture. Sur cette base, une formulation incrémentale permet l'intégration de l'effet des variations soudaines d’humidité relative (autrement dit, le choc hydrique) sur la zone d’élaboration(zone cohésive) en introduisant un champ de contraintes supplémentaires le long de cette zone. Fonction de la variation de HR, ce champ de contraintes supplémentaires dépend de l'état de contrainte et de l'ouverture de la fissure le long de la zone cohésive, mais également de l'humidité en pointe de fissure (matériau non endommagé). Dans l'analyse par éléments finis, un opérateur tangent algorithmique est utilisé pour résoudre le problème non linéaire en combinant le modèle de mécanosorption et le modèle de zone cohésive et en intégrant l'effet du choc hydrique.La simulation du comportement d'une éprouvette entaillée soumise à un chargement constant et à des variations cycliques de HR montre un fort couplage entre le comportement mécanosorptif et l'effet du choc hydrique HR sur la zone d’élaboration. Ce couplage entraîne une augmentation de la propagation des fissures et conduit à une fissuration plus précoce par rapport à celle obtenue à partir du modèle de mécanosorption seul ou à partir du modèle de zone cohésive en intégrant l'effet des variations soudaines de HR. En outre, le couplage entre le modèle mécanosorptif et le modèle de zone cohésive en intégrant l'effet du chochydrique montre l'intérêt d'une telle approche numérique pour décrire le comportement complexe des éléments de charpente en bois soumis à des conditions climatiques variables,comportement qui ne peut être prédit par une simple superposition des deux modélisations. / This thesis is dedicated to the simulation of the fracture behavior of wood under long-termloading and variable relative humidity conditions. Indeed, wood is well-known to be a highlyhygroscopic material in so far as its mechanical and fracture properties are very dependenton moisture. Moreover, the stability of an existent crack in a structural element can bestrongly affected by the sudden variations of relative humidity (RH) and can lead tounexpected failure of the element.The thermodynamic approach proposed in this thesis includes the mechano-sorptive effect inthe analytical expression of the deformation, by operating a decoupling of the strain in amechanical part and a mechano-sorptive part in material. Moreover, the quasi-brittle fractureof wood is here simulated from a cohesive zone model whose cohesive parameters arefunctions of the moisture in order to mimic the moisture-dependent character of the fractureproperties. On this basis, an increment formulation allows the integration of the effect ofsudden RH variations on the fracture process zone (cohesive zone) by introducing anadditional stress field along this zone. As a function of the RH variation, this additional stressfield depends on not only the stress state and the crack opening along the cohesive zone butalso the material moisture ahead of the zone (undamaged material). In the finite elementanalysis, an algorithmic tangent operator is used to solve the non-linear problem combiningmechano-sorptive model and cohesive zone model including the effect of sudden RHvariations.The simulation of a notched structural element submitted to a constant load and cyclic RHvariations exhibits a strong coupling between the mechano-sorptive behavior and the effectof the RH variations on the fracture process zone (FPZ). This coupling results in an increaseof the crack propagation kinetic and leads to a precocious failure compared to those obtainedfrom the mechano-sorptive model or from the effect of sudden RH variations on the FPZ.Moreover, the coupling between the mechano-sorptive model and the effect of sudden RHvariations on the FPZ which cannot be predicted by a simple superposition of both effects,showing the interest of such a numerical approach in order to describe the complex behaviorof wood structural elements submitted to variable climatic conditions.
27

Modelování lomového procesu v kvazikřehkých materiálech / Modeling of fracture process in quasi-brittle materials

Klon, Jiří January 2016 (has links)
This work is focused on the evaluation of the selected fracture parameters of quasi-brittle material, especially concrete, and an assessment of their dependence on the size and shape of the fracture process zone developing at the tip of the macroscopic crack during fracture. For this purpose, experimentally obtained loading diagrams published in the scientific literature have been utilized. These diagrams have been processed into a form enabling creation and calibration of numerical models of these tests in the ATENA FEM program. The results obtained from simulations of the three-point bending tests on beams of four sizes, with three notches lengths, using the created numerical models were used for determination of fracture parameters of concrete. Results of the work consist of the determined values of the specific energy dissipated for creation of new surfaces of the effective crack and an estimation of the specific energy dissipated in the volume of the fracture process zone, which exhibits specific parameters for each beam size and notch length.
28

[pt] ANÁLISE TERMOMECÂNICA DO DANO EM MATERIAIS QUASE-FRÁGEIS / [en] THERMOMECHANICAL ANALYSIS OF DAMAGE IN QUASE-BRITTLE MATERIALS

ILAMES JORDAN GAMA DE MORAES 19 April 2022 (has links)
[pt] A previsão do comportamento de materiais quase-frágeis desde o início de sua degradação até o aparecimento de fraturas pode ser apoiada pelo o uso da mecânica do dano contínuo. Efeitos térmicos, além de mecânicos, podem apresentar contribuição significativa na resposta do material e da estrutura. Nesse sentido, o acoplamento entre os distintos ramos da física descrevem a livre conversão da energia em suas diversas formas. O presente trabalho trata do acoplamento térmico em problemas de dano em materiais quase frágeis, em que são abordados o modelo de dano isótropico e os critério de danificação, bem como leis de evolução do dano térmico e mecânico. Além disso, aspectos inerentes à termodinâmica e transferência de calor são explicitados. O efeito térmico na análise estrutural inicia-se com uma investigação sobre os requisitos para que variações de temperatura produzam tensões térmicas e prossegue com um estudo do efeito no material, que reduz as propriedades de módulo de elasticidade, resistência à tração e à compressão além da energia de fratura. No entanto, a modelagem em elementos finitos da degradação da rigidez da estrutura devido ao processo de dano apresenta problemas de dependência da malha, que requerem o uso de técnicas de regularização da solução. Esse tópico é também abordado no trabalho. Exemplos numéricos demonstram os efeitos do acoplamento termomecânico na previsão da integridade de estruturas de materias quase-frágeis. / [en] Predicting the behavior of almost brittle materials in face of material degradation up to fracture is a topic that can be addressed with the use of continuous damage mechanics. Thermal effects, in addition to mechanical ones, may contribute significantly to the structural and material response. In this sense, the coupling between the different branches of physics takes into account the free conversion of energy in its various forms. The present work is about the thermal-mechanical coupling in in quasi-brittle materials, in which the isotropic damage model and the damage criteria are addressed, as well as the laws of evolution of thermal and mechanical damage. In addition, aspects inherent to thermodynamics and heat transfer are explained. The thermal effect in the structural analysis begins with an investigation of the requirements for temperature variations to produce thermal stresses and follows with a study of the effect of temperature on the material, which affects the elasticity module, the tensile and compression strength, in addition to the fracture energy. However, finite element modeling of stiffness degradation due to the damage process leads to problems of dependence on the mesh, which requires the use of regularization techniques, as addressed in this work. Numerical examples demonstrate the effects of thermo-mechanical coupling in the assessment of structure integrity.
29

Anisotrope Schädigungsmodellierung von Beton mit Adaptiver Bruchenergetischer Regularisierung / Anisotropic damage modeling of concrete regularized by means of the adaptive fracture energy approach

Pröchtel, Patrick 23 October 2008 (has links) (PDF)
Der Gegenstand der vorliegenden Arbeit ist die Simulation von Betonstrukturen beliebiger Geometrie unter überwiegender Zugbelastung. Die Modellierung erfolgt auf Makroebene als Kontinuum und zur Lösung des mechanischen Feldproblems wird die Finite-Elemente-Methode verwendet. Ein neues Materialmodell für Beton und eine Erweiterung der Bruchenergetischen Regularisierung werden vorgestellt. Die Arbeit ist in zwei Teile gegliedert. Im ersten Teil wird ein lokales, anisotropes Schädigungsmodell abgeleitet, wobei als Schädigungsvariable ein symmetrischer Tensor zweiter Stufe gewählt wird. Die Verwendung einer Normalenregel im Raum der dissipativen Kräfte zur Bestimmung der Schädigungsevolution und die Definition der Schädigungsgrenzflächen im Raum der dissipativen Kräfte gewährleisten die Gültigkeit der Hauptsätze der Thermodynamik und des Prinzips der maximalen Dissipationsrate. Vorteilhaft ist die Symmetrie der Materialtangente, die sich aus diesem Vorgehen ergibt. Eine Formulierung mit drei entkoppelten Schädigungsgrenzflächen wird vorgeschlagen. Eine wichtige Forderung bei der Ableitung des Materialmodells war die Verwendung einer möglichst geringen Anzahl von Materialparametern, welche darüber hinaus aus wenigen Standardversuchen bestimmbar sein sollten. Das Schädigungsmodell enthält als Materialparameter den Elastizitätsmodul, die Querdehnzahl, die Zugfestigkeit und die auf eine Einheitsfläche bezogene Bruchenergie. Im zweiten Teil der Arbeit stehen Lokalisierung und Regularisierung im Fokus der Betrachtungen. Aufgrund der lokalen Formulierung des Materialmodells tritt bei Finite-Elemente Simulationen eine Netzabhängigkeit der Simulationsergebnisse auf. Um dieser Problematik zu begegnen und netzunabhängige Simulationen zu erreichen, werden Regularisierungstechniken angewendet. In dieser Arbeit wird die Bruchenergetische Regularisierung eingesetzt, die durch die Einführung einer äquivalenten Breite in ein lokal formuliertes Stoffgesetz gekennzeichnet ist. Die spezielle Wahl eines Wertes für die äquivalente Breite beruht auf der Forderung, dass in der Simulation die korrekte Bruchenergie je Einheitsfläche für den Bruchprozess verbraucht wird, d.h. die Energiedissipation der Realität entspricht. In vorliegender Arbeit wird die neue These aufgestellt, dass die Energiedissipation nur für den Fall korrekt abgebildet wird, wenn die im Stoffgesetz enthaltene äquivalente Breite in jedem Belastungsinkrement der Breite des Bereiches entspricht, in dem in der Simulation Energie dissipiert wird. In einer Simulation wird in den Bereichen Energie dissipiert, in denen die Schädigung im aktuellen Belastungsinkrement zunimmt. In vorliegender Arbeit werden die energiedissipierenden Bereiche daher als Pfad der Schädigungsrate bezeichnet. Um Erkenntnisse über die Entwicklung des Pfades der Schädigungsrate über den Belastungsverlauf zu erhalten, wurden umfangreiche Untersuchungen anhand von Simulationen eines beidseitig gekerbten Betonprobekörpers unter kombinierter Zug-Schubbeanspruchung durchgeführt, wobei die gewählten Werte für die äquivalente Breite variiert wurden. Es wurde stets eine Diskretisierung mit linearen Verschiebungselementen verwendet, wobei die Bereiche mit zu erwartender Schädigung feiner und regelmäßig mit Elementen quadratischer Geometrie diskretisiert wurden. Die Ergebnisse der Untersuchungen zeigen, dass die Breite des Pfades der Schädigungsrate abhängig ist von der Schädigung am betrachteten Materialpunkt, dem von Schädigungsrichtung und Elementkante eingeschlossenen Winkel, der Elementgröße und den Materialparametern. Um die geforderte Übereinstimmung von äquivalenter Breite und der Breite des Pfades der Schädigungsrate zu erreichen, werden neue Ansätze für die äquivalente Breite vorgeschlagen, die die erwähnten Einflüsse berücksichtigen. Simulationen unter Verwendung der neuen Ansätze für die äquivalente Breite führen zu einer guten Übereinstimmung von äquivalenter Breite und der Breite des Pfades der Schädigungsrate in der Simulation. Die Ergebnisse der Simulationen, wie z.B. Last-Verformungsbeziehung und Rissverläufe, sind netzunabhängig und stimmen gut mit den experimentellen Beobachtungen überein. Basierend auf den gewonnenen Erkenntnissen wird eine Erweiterung der Bruchenergetischen Regularisierung vorgeschlagen: die Adaptive Bruchenergetische Regularisierung. Im abschließenden Kapitel der Arbeit werden mit der vorgeschlagenen Theorie, dem neuen Schädigungsmodell und der Adaptiven Bruchenergetischen Regularisierung, noch zwei in der Literatur gut dokumentierte Versuche simuliert. Die Simulationsergebnisse entsprechen den experimentellen Beobachtungen. / This doctoral thesis deals with the simulation of predominantly tensile loaded plain concrete structures. Concrete is modeled on the macro level and the Finite Element Method is applied to solve the resulting mechanical field problem. A new material model for concrete based on continuum damage mechanics and an extended regularization technique based on the fracture energy approach are presented. The thesis is subdivided into two parts. In the first part, a local, anisotropic damage model for concrete is derived. This model uses a symmetric second-order tensor as the damage variable, which enables the simulation of orthotropic degradation. The validity of the first and the second law of thermodynamics as well as the validity of the principle of maximum dissipation rate are required. Using a normal rule in the space of the dissipative forces, which are the thermodynamically conjugated variables to the damage variables, and the definition of the loading functions in the space of the dissipative forces guarantee their validity. The suggested formulation contains three decoupled loading functions. A further requirement in the derivation of the model was the minimization of the number of material parameters, which should be determined by a small number of standard experiments. The material parameters of the new damage model are the Young’s modulus, the Poisson’s ratio, the tensile strength and the fracture energy per unit area. The second part of the work focuses on localization and regularization. If a Finite Element simulation is performed using a local material model for concrete, the results of the Finite Element simulation are mesh-dependent. To attain mesh-independent simulations, a regularization technique must be applied. The fracture energy approach, which is characterized by introducing a characteristic length in a locally formulated material model, is used as regularization technique in this work. The choice of a value for the characteristic length is founded by the requirement, that the fracture energy per unit area, which is consumed for the fracture process in the simulation, must be the same as in experiment, i.e. the energy dissipation must be correct. In this dissertation, the new idea is suggested that the correct energy dissipation can be only attained if the characteristic length in the material model coincides in every loading increment with the width of the energy-dissipating zone in the simulation. The energy-dissipating zone in a simulation is formed by the integration points with increasing damage and obtains the name: damage rate path. Detailed investigations based on simulations of a double-edge notched specimen under mixed-mode loading are performed with varying characteristic lengths in order to obtain information concerning the evolution of the damage rate path during a simulation. All simulations were performed using displacement-based elements with four nodes. The range with expected damage was always finer and regularly discretized. The results of the simulations show that the width of the damage rate path depends on the damage at the specific material point, on the angle between damage direction and element edges, on the element size and on the material parameters. Based on these observations, new approaches for the characteristic length are suggested in order to attain the coincidence of the characteristic length with the width of the damage rate path. Simulations by using the new approaches yield a sufficient coincidence of the characteristic length with the width of the damage rate path. The simulations are mesh-independent and the results of the simulation, like load-displacement curves or crack paths, correspond to the experimental results. Based on all new information concerning the regularization technique, an extension of the fracture energy approach is suggested: the adaptive fracture energy approach. The validity and applicability of the suggested theory, the new anisotropic damage model and the adaptive fracture energy approach, are verified in the final chapter of the work with simulations of two additional experiments, which are well documented in the literature. The results of the simulations correspond to the observations in the experiments.
30

Anisotrope Schädigungsmodellierung von Beton mit Adaptiver Bruchenergetischer Regularisierung

Pröchtel, Patrick 24 July 2008 (has links)
Der Gegenstand der vorliegenden Arbeit ist die Simulation von Betonstrukturen beliebiger Geometrie unter überwiegender Zugbelastung. Die Modellierung erfolgt auf Makroebene als Kontinuum und zur Lösung des mechanischen Feldproblems wird die Finite-Elemente-Methode verwendet. Ein neues Materialmodell für Beton und eine Erweiterung der Bruchenergetischen Regularisierung werden vorgestellt. Die Arbeit ist in zwei Teile gegliedert. Im ersten Teil wird ein lokales, anisotropes Schädigungsmodell abgeleitet, wobei als Schädigungsvariable ein symmetrischer Tensor zweiter Stufe gewählt wird. Die Verwendung einer Normalenregel im Raum der dissipativen Kräfte zur Bestimmung der Schädigungsevolution und die Definition der Schädigungsgrenzflächen im Raum der dissipativen Kräfte gewährleisten die Gültigkeit der Hauptsätze der Thermodynamik und des Prinzips der maximalen Dissipationsrate. Vorteilhaft ist die Symmetrie der Materialtangente, die sich aus diesem Vorgehen ergibt. Eine Formulierung mit drei entkoppelten Schädigungsgrenzflächen wird vorgeschlagen. Eine wichtige Forderung bei der Ableitung des Materialmodells war die Verwendung einer möglichst geringen Anzahl von Materialparametern, welche darüber hinaus aus wenigen Standardversuchen bestimmbar sein sollten. Das Schädigungsmodell enthält als Materialparameter den Elastizitätsmodul, die Querdehnzahl, die Zugfestigkeit und die auf eine Einheitsfläche bezogene Bruchenergie. Im zweiten Teil der Arbeit stehen Lokalisierung und Regularisierung im Fokus der Betrachtungen. Aufgrund der lokalen Formulierung des Materialmodells tritt bei Finite-Elemente Simulationen eine Netzabhängigkeit der Simulationsergebnisse auf. Um dieser Problematik zu begegnen und netzunabhängige Simulationen zu erreichen, werden Regularisierungstechniken angewendet. In dieser Arbeit wird die Bruchenergetische Regularisierung eingesetzt, die durch die Einführung einer äquivalenten Breite in ein lokal formuliertes Stoffgesetz gekennzeichnet ist. Die spezielle Wahl eines Wertes für die äquivalente Breite beruht auf der Forderung, dass in der Simulation die korrekte Bruchenergie je Einheitsfläche für den Bruchprozess verbraucht wird, d.h. die Energiedissipation der Realität entspricht. In vorliegender Arbeit wird die neue These aufgestellt, dass die Energiedissipation nur für den Fall korrekt abgebildet wird, wenn die im Stoffgesetz enthaltene äquivalente Breite in jedem Belastungsinkrement der Breite des Bereiches entspricht, in dem in der Simulation Energie dissipiert wird. In einer Simulation wird in den Bereichen Energie dissipiert, in denen die Schädigung im aktuellen Belastungsinkrement zunimmt. In vorliegender Arbeit werden die energiedissipierenden Bereiche daher als Pfad der Schädigungsrate bezeichnet. Um Erkenntnisse über die Entwicklung des Pfades der Schädigungsrate über den Belastungsverlauf zu erhalten, wurden umfangreiche Untersuchungen anhand von Simulationen eines beidseitig gekerbten Betonprobekörpers unter kombinierter Zug-Schubbeanspruchung durchgeführt, wobei die gewählten Werte für die äquivalente Breite variiert wurden. Es wurde stets eine Diskretisierung mit linearen Verschiebungselementen verwendet, wobei die Bereiche mit zu erwartender Schädigung feiner und regelmäßig mit Elementen quadratischer Geometrie diskretisiert wurden. Die Ergebnisse der Untersuchungen zeigen, dass die Breite des Pfades der Schädigungsrate abhängig ist von der Schädigung am betrachteten Materialpunkt, dem von Schädigungsrichtung und Elementkante eingeschlossenen Winkel, der Elementgröße und den Materialparametern. Um die geforderte Übereinstimmung von äquivalenter Breite und der Breite des Pfades der Schädigungsrate zu erreichen, werden neue Ansätze für die äquivalente Breite vorgeschlagen, die die erwähnten Einflüsse berücksichtigen. Simulationen unter Verwendung der neuen Ansätze für die äquivalente Breite führen zu einer guten Übereinstimmung von äquivalenter Breite und der Breite des Pfades der Schädigungsrate in der Simulation. Die Ergebnisse der Simulationen, wie z.B. Last-Verformungsbeziehung und Rissverläufe, sind netzunabhängig und stimmen gut mit den experimentellen Beobachtungen überein. Basierend auf den gewonnenen Erkenntnissen wird eine Erweiterung der Bruchenergetischen Regularisierung vorgeschlagen: die Adaptive Bruchenergetische Regularisierung. Im abschließenden Kapitel der Arbeit werden mit der vorgeschlagenen Theorie, dem neuen Schädigungsmodell und der Adaptiven Bruchenergetischen Regularisierung, noch zwei in der Literatur gut dokumentierte Versuche simuliert. Die Simulationsergebnisse entsprechen den experimentellen Beobachtungen. / This doctoral thesis deals with the simulation of predominantly tensile loaded plain concrete structures. Concrete is modeled on the macro level and the Finite Element Method is applied to solve the resulting mechanical field problem. A new material model for concrete based on continuum damage mechanics and an extended regularization technique based on the fracture energy approach are presented. The thesis is subdivided into two parts. In the first part, a local, anisotropic damage model for concrete is derived. This model uses a symmetric second-order tensor as the damage variable, which enables the simulation of orthotropic degradation. The validity of the first and the second law of thermodynamics as well as the validity of the principle of maximum dissipation rate are required. Using a normal rule in the space of the dissipative forces, which are the thermodynamically conjugated variables to the damage variables, and the definition of the loading functions in the space of the dissipative forces guarantee their validity. The suggested formulation contains three decoupled loading functions. A further requirement in the derivation of the model was the minimization of the number of material parameters, which should be determined by a small number of standard experiments. The material parameters of the new damage model are the Young’s modulus, the Poisson’s ratio, the tensile strength and the fracture energy per unit area. The second part of the work focuses on localization and regularization. If a Finite Element simulation is performed using a local material model for concrete, the results of the Finite Element simulation are mesh-dependent. To attain mesh-independent simulations, a regularization technique must be applied. The fracture energy approach, which is characterized by introducing a characteristic length in a locally formulated material model, is used as regularization technique in this work. The choice of a value for the characteristic length is founded by the requirement, that the fracture energy per unit area, which is consumed for the fracture process in the simulation, must be the same as in experiment, i.e. the energy dissipation must be correct. In this dissertation, the new idea is suggested that the correct energy dissipation can be only attained if the characteristic length in the material model coincides in every loading increment with the width of the energy-dissipating zone in the simulation. The energy-dissipating zone in a simulation is formed by the integration points with increasing damage and obtains the name: damage rate path. Detailed investigations based on simulations of a double-edge notched specimen under mixed-mode loading are performed with varying characteristic lengths in order to obtain information concerning the evolution of the damage rate path during a simulation. All simulations were performed using displacement-based elements with four nodes. The range with expected damage was always finer and regularly discretized. The results of the simulations show that the width of the damage rate path depends on the damage at the specific material point, on the angle between damage direction and element edges, on the element size and on the material parameters. Based on these observations, new approaches for the characteristic length are suggested in order to attain the coincidence of the characteristic length with the width of the damage rate path. Simulations by using the new approaches yield a sufficient coincidence of the characteristic length with the width of the damage rate path. The simulations are mesh-independent and the results of the simulation, like load-displacement curves or crack paths, correspond to the experimental results. Based on all new information concerning the regularization technique, an extension of the fracture energy approach is suggested: the adaptive fracture energy approach. The validity and applicability of the suggested theory, the new anisotropic damage model and the adaptive fracture energy approach, are verified in the final chapter of the work with simulations of two additional experiments, which are well documented in the literature. The results of the simulations correspond to the observations in the experiments.

Page generated in 0.0266 seconds