• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2643
  • 1916
  • 1461
  • 320
  • 293
  • 266
  • 203
  • 105
  • 96
  • 94
  • 80
  • 80
  • 80
  • 80
  • 80
  • Tagged with
  • 8500
  • 2740
  • 1865
  • 1282
  • 1171
  • 1123
  • 785
  • 766
  • 718
  • 680
  • 644
  • 622
  • 598
  • 554
  • 542
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1041

Numerical simulation of fracture in plain and fibre-reinforced concrete

Bui, Thanh Tien, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Localised failure in quasibrittle materials is due mainly to the effects of combined shear and compression. Once the cohesion strength is reached, shear tractions generate slip and aggregate interlocking that cause dilatancy inducing crack opening. Further damage reduces the cohesion and dilatancy so that eventually only a residual friction state remains. The energy dissipated due to friction and interlocking needs to be considered in the constitutive law. Initially, a Mohr-Coulomb yield surface with a tension cut-off will be investigated. A compression cap will be included when the modelled interfaces are not appropriately aligned and compressive failure must be controlled. The evolution of the yield surface and the appropriate flow rules to be used in the interface/particle model, are questions which will be examined. The particle/interface model with plasticity concentrated at the interface nodes, which can produce the correct volumetric expansion, will also be studied. A composite model has been developed to represent the heterogeneity of concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The constituents of concrete are modelled using triangular elements with six interface nodes along their sides. Fracture is captured through a constitutive softening-fracture law at the interface nodes, which bound the elastic domain inside each element. The inelastic displacement at an interface node represents the crack opening, which is associated to the conjugate internodal force by a single branch softening law. The path-dependent softening behaviour is derived in irreversible rate formulation within a quasi-prescribed displacement control. At each event in the loading history, all equilibrium solutions for the prescribed mesh can be obtained and the critical equilibrium path with the minimum increment of external work adopted. The crack profile develops restrictively to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the irreversible rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. Other work is aimed at incorporating fibre reinforcement in the model. Fibre particles are modelled by introducing additional linear elements interconnecting distant interface nodes in the matrix media after the generation of matrix-aggregate structure.
1042

Development and performance of class F fly ash based geopolymer concretes against sulphuric acid attack

Song, Xiujiang, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Geopolymer concretes synthesised from composite class F fly ashes and a mixed alkaline activator were optimised by use of Taguchi orthogonal design method. The optimised mix achieved a compressive strength at the age of 28 days of 70 and 58 MPa after initial curing at 70??C for 12 hours and at 23??C for 24 hours, respectively. The resultant Geopolymer has an amorphous aluminosilicate structure. Efflorescence and the potential risk of alkali-silica reaction for the Geopolymer used in this study are both very low. The research confirmed that the Geopolymer concrete developed in this study is far superior to Portland cement concrete when exposed in a sulphuric acid environment. The standard immersion tests finally selected for this research were in 10% sulphuric acid for 56 days and in 1% sulphuric acid for one year. Geopolymer concrete samples retained their shape without softening though they experienced a mass loss of about 5% and a strength loss of some 30%. Portland cement concrete recorded a mass loss of some 40% in a 10% sulphuric acid for 28 days. The penetration rate of sulphuric acid into the Geopolymer concrete was found to approximately follow Fick’s first law of diffusion and a linear relationship between the neutralisation depth and the square root of immersion time (in day) was established. The degradation processes of Geopolymer concrete in sulphuric acid environments were intensively studied. The first stage involved the preferential liberation of alkali ions. The tetrahedral aluminium in the Si-O-Al configuration was removed and converted to octahedral aluminium. Consequently, the original units of Si(1Al) degraded to a silica polymorph structure in the corroded Geopolymer, which continued to serve a cementitious role. In contrast, in the case of Portland cement concrete, the acid solution dissolved the hydration products of the cement paste. The residual reaction products were found to be soft and have no structural strength. Geopolymers with alkaline activators of mixed sodium hydroxide and sodium silicate did not exhibit any cracking problems. Class F fly ash with low calcium content was found to be suitable for developing a Geopolymer binder able to withstand sulphuric acid attack.
1043

Deformation Capacity and Moment Redistribution of Partially Prestressed Concrete Beams

Rebentrost, Mark January 2004 (has links)
Ductility is a measure of the ability of a material, section, structural element or structural system to sustain deformations prior to collapse without substantial loss of resistance. The Australian design standard, AS 3600, imposes minimum ductility requirements on structural concrete members to try to prevent premature non-ductile failure and hence to ensure adequate strength and ductile-type collapse with large deflections. The requirements also enable members to resist imposed deformation due to differential settlement, time effects on the concrete and temperature effects, whilst ensuring sufficient carrying capacity and a safe design. Current AS 3600 requirements allow a limited increase or reduction in elastically determined bending moments in critical regions of indeterminate beams, accommodating their ability to redistribute moment from highly stressed regions to other parts of the beam. Design moment redistribution limits and ductility requirements in AS 3600 for bonded partially prestressed beams are a simple extension of the requirements for reinforced members. The possibility of premature non-ductile failure occurring by fracture of the reinforcement or prestressing steel in partially prestressed members has not adequately addressed. The aim of this research is to investigate the overload behaviour and deformation capacity of bonded post-tensioned beams. The current ductility requirements and design moment redistribution limits according to AS 3600 are tested to ensure designs are both safe and economical. A local flexural deformation model based on the discrete cracked block approach is developed to predict the deformation capacity of high moment regions. The model predicts behaviour from an initial uncracked state through progressive crack development into yielding and collapse. Local deformations are considered in the model using non-linear material laws and local slip behaviour between steel and concrete interfaces, with rigorous definition of compatibility in the compression and tension zones. The model overcomes limitations of past discrete cracked block models by ensuring compatibility of deformation, rather than strain compatibility. This improvement allows the modeling of members with multiple layers of tensile reinforcement and variable depth prestressing tendons having separate material and bond properties. An analysis method for simple and indeterminate reinforced and partially prestressed members was developed, based on the proposed deformation model. To account for the effect of shear in regions of high moment and shear present over the interior supports of a continuous beam, a modification to the treatment of local steel deformation in the flexural model, based on the truss analogy, was undertaken. Secondary reactions and moments due to prestress and continuity are also accounted for in the analysis. A comparison of past beam test data and predictions by the analysis shows the cracking pattern and deformation capacity at ultimate of flexural regions in reinforced and partially prestressed members to be predicted with high accuracy. The analysis method accurately predicts local steel behaviour over a cracked region and deformation capacity for a wide range of beams which fail either by fracture of steel or crushing of the concrete. A parametric study is used to investigate the influence of different parameters on the deformation capacity of a typical negative moment region in a continuous beam. The structural system consists of a bonded post-tensioned, partially prestressed band beam. The primary parameters investigated are the member height and span-to-depth ratio; relative quantity of reinforcing and prestressing steel; material properties and bond capacity of the steels; and lastly the compression zone properties. Results show that the effects of the various parameters on the overload behaviour of partially prestressed beams follow the same trends as reinforced beams. A new insight into the local steel behaviour between cracks is attained. The deformation behaviour displays different trends for parametric variations of the local bond capacity, bar diameter and crack spacing, when compared to past analytical predictions from comparable studies. The discrepancy in findings is traced back to the definition of the plastic rotation capacity and the sequencing of the yielding of the steels. Compared to the other local deformation models, the current model does not assume a linear distribution of strain at a crack. The current findings highlight an important difference between predicted behaviours from different deformation compatibility requirements in local deformation models which has not yet been discussed in the literature. The local deformation model evaluates the relationship between maximum steel strain at a crack and average steel deformation over a crack spacing for the entire loading history. The total steel percentage, hardening properties of the steel and concrete strength are shown by the model to have the greatest effect on these steel strain localisation factors. Section analysis, as currently used in design, can be improved with the proposed simplification of the relationships to identify and quantify the effects of steel fracture on deformation capacity and strength. The numerical effort required to simulate the overload behaviour of practical beam designs with multiple reinforcement elements and a prestressing tendon are currently too great to be used in an extensive numerical study. The numerically more efficient smeared block approach is shown to accurately predict the ultimate carrying capacity of prestressed beams failing by crushing of the concrete. Consequently, this method is adopted to study the allowable limits of moment redistribution in the present investigation, Simplified relationships of the steel strain localisation factors evaluated in the parametric study of deformation capacity is used to predict maximum steel strains and premature failure. The limits of moment redistribution in bonded, post-tensioned partially prestressed band beams are explored by comparing the design load and predicted carrying capacity, for different section ductilities and design moment redistribution. In addition, the effects of different concrete strengths, up to 85 MPa, along with as three reinforcing and prestressing steel ductilities are quantified and compared to current Australian and international design requirements. Limitations in the carrying capacity are investigated for different reinforcement and prestress uniform elongation capacities. More than one thousand beam simulations produce results showing that current design moment redistribution and ductility requirements in the Australian design code for concrete structures (AS 3600) are sufficient for normal strength concretes (less than 50 MPa). A suggestion for design moment redistribution limits, section ductility requirements and steel ductility limits is made for members constructed from higher strength concretes. A special high steel ductility class is proposed for both the reinforcement and prestressing steel to allow moment redistribution in higher strength concrete. No moment redistribution is proposed for members reinforced with low ductility (Class L) steel. An increase of the current elongation limit of Class L steel from 1.5 % to 2.5% is suggested to ensure strength and safety. An increase in the current ductility requirements from fsu/ fsy=1.03 and elongation equal to 1.5% to fsu/fsy=1.05 and 2.5% elongation for low ductility Class L steel is suggested to ensure strength and safety. / Thesis (Ph.D.)--Civil and Environmental Engineering, 2004.
1044

Response modelling of pavement subjected to dynamic surface loading based on stress-based multi-layered plate theory

Tu, Wei, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 216-229).
1045

Post-crack and post-peak behavior of reinforced concrete members by nonlinear finite element analysis

Wu, Yi, January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
1046

The behaviour of reinforced concrete flat slabs

Jenkins, Bryan Robert. January 1972 (has links) (PDF)
No description available.
1047

<em>Isolerande balkonginfästningar</em> : Thermally-insulated balconies

Kulasin, Aid January 2009 (has links)
<p>In this work a study has been performed to show the different kinds of insulated balcony connections exists on the market. In the work there is also a short description of thermal bridges concerning balconies. A description of older solutions for balcony connections is given as well as a calculation of the difference in energy costs for a insulated balcony connection compared to the standard connection. The work includes a short description of the different products. After that there is a short information about their insulation properties, durability, acoustic performance, assembly, computer programme and a short analyses for each product.</p>
1048

Transport of chloride ions during accelerated cathodic protection of reinforced concrete structures

Rehani, Manu 08 June 2000 (has links)
Chloride ion migration was studied under accelerated cathodic protection conditions using 6" x 6" x 6" mortar blocks of varying initial chloride content and water to cement ratios. An iron mesh embedded parallel to one face in the blocks acted as the cathode and zinc was thermally sprayed on the opposite face to form an anode. First, the potential response of two blocks was studied at a current density of 3 mA/ft��. One block was outfitted with a heat sink and moisture barrier while the other block was periodically wetted. Second, eight blocks were polarized at various current densities for a period of one year. In both sets of experiments, the blocks were maintained in controlled humidity and temperature. The potential across the blocks was recorded at periodic intervals and mortar samples were drilled to measure the chloride content as a function of aging. Based on observations of the first study a theoretical model was constructed which indicates that zinc based electrochemical products form at the zinc-concrete interface. The effect of the electrochemical product on raising the resistance across a cathodic protection set-up may be of consequence and should be further studied. Blocks polarized at 6 mA/ft�� exhibited similar behavior as the blocks polarized at 3 mA/ft��, but the response was twice as fast. This result indicates that studying cathodic protection under accelerated conditions is valid. The chloride content of samples obtained from one set of blocks over the course of the experiment was normalized against the initial chloride profile. The normalized profiles were calculated as a function of aging and they supported the hypothesis that chloride ions would move away from the rebar and towards the sprayed zinc anode under cathodic protection. / Graduation date: 2001
1049

The development of magnesium oxychloride cement as repairing materials /

Chan, James. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 119-121). Also available in electronic version.
1050

Impact of seismic code provisions in the central U.S.: a performance evaluation of a reinforced concrete building

Kueht, Erin 15 May 2009 (has links)
The close proximity to the New Madrid Seismic Zone and the significant population and infrastructure presents a potentially substantial risk for central U.S. cities such as Memphis, Tennessee. However, seismic provisions in currently adopted Memphis building codes for non-essential structures have a lower seismic design intensity level than the 2003 International Building Code (IBC) with broader acceptance nationally. As such, it is important to evaluate structures designed with these local seismic provisions to determine whether they will perform adequately during two different design-level earthquakes in this region. A four-story reinforced concrete (RC) moment frame with wide-module pan joists was designed according to current building codes relevant to the central U.S.: the 2003 IBC, the City of Memphis and Shelby County locally amended version of the 2003 IBC, and the 1999 Standard Building Code (SBC). Special moment frames (SMFs) were required for the IBC and SBC designs, but lower design forces in the amended IBC case study permitted an intermediate moment frame (IMF). However, the margin by which a SMF was required was very small for the SBC design. For slightly different conditions IMFs could be used. Nonlinear push-over and dynamic analyses using synthetic ground motions developed for Memphis for 2% and 10% probabilities of exceedance in 50 years were conducted for each of the three designs. The FEMA 356 recommended Basic Safety Objective (BSO) is to dually achieve Life Safety (LS) for the 10% in 50 years earthquake and Collapse Prevention (CP) for the 2% in 50 years earthquake. For the member-level evaluation, the SMF designs met the LS performance objective, but none of the designs met the CP performance objective or the BSO. However, the margin by which the SMF buildings exceeded CP performance was relatively small compared to that of the IMF building. Fragility curves were also developed to provide an estimate of the probability of exceeding various performance levels and quantitative performance limits. These relationships further emphasize the benefits of using an SMF as required by the IBC and, in this case, the SBC.

Page generated in 0.0649 seconds