• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2643
  • 1916
  • 1461
  • 320
  • 293
  • 266
  • 203
  • 105
  • 96
  • 94
  • 80
  • 80
  • 80
  • 80
  • 80
  • Tagged with
  • 8500
  • 2740
  • 1865
  • 1282
  • 1171
  • 1123
  • 785
  • 766
  • 718
  • 680
  • 644
  • 622
  • 598
  • 554
  • 542
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1061

Early age delamination in concrete pavements made with gravel aggregates

Liu, Juanyu 02 June 2009 (has links)
Gravel aggregates had been used extensively in the Houston District of Texas Department of Transportation (TxDOT) for continuously reinforced concrete pavements construction for many years. However, some of these pavements have been subject to early age delamination and eventual spalling damage. Therefore, a series of studies funded by TxDOT since the early 1990's has been conducted to gain a better understanding of mechanisms, material properties, and construction practices, and to provide guidelines and recommendations for minimizing early-age delamination in concrete pavements made with gravel aggregates. In this study, a test protocol to measure the bond strength between aggregates and cement mortar was established, and the effects of different material and construction parameters on the bond strength of concrete at early ages using a fractional factorial design were investigated. The significances of each factor to achieve better bonding performance were determined, and the optimum design combination was subsequently chosen and validated. Geometric parameters were proposed to characterize aggregate shape properties relative to bonding performance with the facilitation of the Aggregate Imaging System. A rating system based on utility theory was developed to evaluate the overall contribution of aggregate properties (i.e. physical, geometric, and chemical) to the concrete bonding capability and the feasibility of certain mixture design combinations. As for theoretical representation of the bond strength across the interfacial transition zone, a model of interfacial fracture energy between aggregate and mortar that represents the energy necessary to create a crack along the interface was formulated. This model built the connection between concrete properties at the meso-level (represented by the interfacial fracture energy between aggregate and mortar) and the macro-level (represented by fracture toughness of concrete and significant influencing materials and construction factors). In addition, the moisture effects on stress development of concrete pavements at early ages using field data as inputs were numerically simulated, and a fracture mechanics-based approach was used to predict the occurrence of delamination. A delamination detection protocol for the field was developed to explore the feasibility and potential of utilizing Ground Penetration Radar technology in delamination detection. Research findings from laboratory investigation, field testing, theoretical modeling, and numerical analysis were further validated through field test sections, and the associated framework for delamination guidelines was established.
1062

Development of a Reaction Signature for Combined Concrete Materials

Ghanem, Hassan A. 2009 May 1900 (has links)
Although concrete is widely considered a very durable material, if conditions are such, it can be vulnerable to deterioration and early distress development. Alkali-Silica Reaction (ASR) is a major durability problem in concrete structures. It is a chemical reaction between the reactive silica existent in some types of rocks and alkali hydroxides in the concrete pore water. The product of this reaction is a gel that is hygroscopic in nature. When the gel absorbs moisture, it swells leading to tensile stresses in concrete. When those stresses exceed the tensile strength of concrete, cracks occur. The main objective of this study was to address a method of testing concrete materials as a combination to assist engineers to effectively mitigate ASR in concrete. The research approach involved capturing the combined effects of concrete materials (water cement ratio, porosity, supplementary cementitious materials, etc.) through a method of testing to allow the formulation of mixture combinations resistant to ASR leading to an increase in the life span of concrete structures. To achieve this objective, a comprehensive study on different types of aggregates of different reactivity was conducted to formulate a robust approach that takes into account the factors affecting ASR; such as, temperature, moisture, calcium concentration and alkalinity. A kinetic model was proposed to determine aggregate ASR characteristics which were calculated using the System Identification Method. Analysis of the results validates that ASR is a thermally activated process and therefore, the reactivity of an aggregate can be characterized in terms of its activation energy (Ea) using the Arrhenius equation. Statistical analysis was conducted to determine that the test protocol is highly repeatable and reliable. To relate the effect of material combinations to field performance, concrete samples with different w/cm?s and fly ash contents using selective aggregates were tested at different alkalinities. To combine aggregate and concrete characteristics, two models were proposed and combined. The first model predicts the Ea of the aggregate at levels of alkalinity similar to field conditions. The second model, generated using the Juarez- Badillo transform, connects the ultimate expansion of the concrete and aggregate, the water cement ratio, and the fly ash content to the Ea of the rock. The proposed models were validated through laboratory tests. To develop concrete mixtures highly resistant to ASR, a sequence of steps to determine threshold total alkali in concrete were presented with examples. It is expected that the knowledge gained through this work will assist government agencies, contractors, and material engineers, to select the optimum mixture combinations that fits best their needs or type of applications, and predict their effects on the concrete performance in the field.
1063

炭素・酸素同位体分析による実構造物中のコンクリートの中性化進行評価

Yoshida, Hidekazu, Maruyama, Ippei, Minami, Masayo, Asahara, Yoshihiro, 吉田, 英一, 丸山, 一平, 南, 雅代, 淺原, 良浩 03 1900 (has links)
第23回名古屋大学年代測定総合研究センターシンポジウム平成22(2010)年度報告
1064

Characterization of asphalt concrete using anisotropic damage viscoelastic-viscoplastic model

Abdel-Rahman Saadeh, Shadi 25 April 2007 (has links)
This dissertation presents the integration of a damage viscoelastic constitutive relationship with a viscoplastic relationship in order to develop a comprehensive anisotropic damage viscoelastic-viscoplastic model that is capable of capturing hot mix asphalt (HMA) response and performance under a wide range of temperatures, loading rates, and stress states. The damage viscoelasticity model developed by Schapery (1969) is employed to present the recoverable response, and the viscoplasticity model developed at the Texas Transportation Institute (TTI) is improved and used to model the irrecoverable strain component. The influence of the anisotropic aggregate distribution is accounted for in both the viscoelastic and viscoplastic responses. A comprehensive material identification experimental program is developed in this study. The experimental program is designed such that the quantification and decomposition of the response into viscoelastic and viscoplastic components can be achieved. The developed experimental program and theoretical framework are used to analyze repeated creep tests conducted on three mixes that include aggregates with different characteristics. An experiment was conducted to capture and characterize the three-dimensional distribution of aggregate orientation and air voids in HMA specimens. X-ray computed tomography (CT) and image analysis techniques were used to analyze the microstructure in specimens before and after being subjected to triaxial repeated creep and recovery tests as well as monotonic constant strain rate tests. The results indicate that the different loading conditions and stress states induce different microstructure distributions at the same macroscopic strain level. Also, stress-induced anisotropy is shown to develop in HMA specimens.
1065

Shock vibration resistance and direct tensile strength of concrete

Zheng, Wei, January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references.
1066

Shear strengthening of reinforced concrete beams using CFRP and bonding behavior between CFRP and concrete /

Zhang, Huiyun. January 2005 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 179-180). Also available via World Wide Web.
1067

Continuum MDOF model for seismic analysis of wall-frame structures /

Huang, Kai. January 2009 (has links)
Includes bibliographical references (p. 217-227).
1068

Effects of strain gradient on maximun concrete stress and flexural capacity of normal-strength RC members

Peng, Jun, January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 66-68). Also available in print.
1069

Strengthening of reinforced concrete two-way slabs /

Ebead, Usama Ali Ali. January 2002 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 231-245.
1070

Evaluation of performance graded asphalt binder equipment and testing protocol

Pumphrey, Michael E., January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 106 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 104-105).

Page generated in 0.0569 seconds