• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2658
  • 1917
  • 1461
  • 320
  • 293
  • 266
  • 204
  • 107
  • 96
  • 94
  • 80
  • 80
  • 80
  • 80
  • 80
  • Tagged with
  • 8513
  • 2743
  • 1868
  • 1283
  • 1173
  • 1123
  • 786
  • 771
  • 719
  • 681
  • 644
  • 625
  • 599
  • 554
  • 542
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1251

Seismic performance of flexible concrete structures /

Feghali, Habib Labib, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 256-262). Available also in a digital version from Dissertation Abstracts.
1252

Strengthening reinforced concrete bridges using carbon fiber reinforced polymer composites /

Breña, Sergio F. January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 429-435). Available also in a digital version from Dissertation Abstracts.
1253

Restrained shrinkage behavior of high-performance concrete containing slag

Montemarano, John, January 2009 (has links)
Thesis (M.S.)--Rutgers University, 2009. / "Graduate Program in Civil and Environmental Engineering." Includes bibliographical references (p. 151-153).
1254

Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse

Orton, Sarah Lynn, 1978- 28 August 2008 (has links)
Reinforced concrete buildings may be vulnerable to progressive collapse due to a lack of continuous reinforcement. Progressive collapse is an extreme form of collapse that is disproportionate to the originating cause. Such collapses cause not only significant damage to buildings, but also greater loss of life and injuries. Carbon fiber reinforced polymer (CFRP) may be used to retrofit existing reinforced concrete beams and provide the missing continuity needed to resist progressive collapse. This research focuses on retrofitting the beams in a reinforced concrete building to provide sufficient continuity to reach catenary action. The catenary action may allow the beam to carry vertical loads at large displacements if a supporting column were removed. The CFRP can provide continuity through the negative moment reinforcement or through the positive moment reinforcement. The research was broken into three major components. Anchorage tests form the design basis of the CFRP retrofit and ensure that the capacity of the retrofit can be accurately predicted. Continuity tests determine if the CFRP retrofit is capable of providing continuity and if the retrofit will allow the beam to reach catenary action and sustain a load representing resistance to progressive collapse. The analysis model forms a set of equations for catenary action so the results can be applied to reinforced concrete beams in general. Forty anchorage tests, eight continuity tests, and one analysis model were constructed and evaluated. The anchorage tests found that carbon fiber anchors enabled improved utilization of the tensile capacity of a CFRP sheet and improved the efficiency of material usage in CFRP retrofits. The continuity tests found that beams without continuous reinforcement can reach catenary action (depending on design details) and a CFRP retrofit, if designed correctly (placed in locations that do not cause rebar fracture before catenary), may be able to reduce vulnerability to progressive collapse. The analysis model was able to accurately predict the load-deflection behavior of a reinforced concrete beam in catenary action. The overall conclusion is that a CFRP retrofit can reduce vulnerability to progressive collapse in reinforced concrete buildings. / text
1255

Reliability assessment of flexural cracking resistance of reinforced concrete retaining structures

Cho, Wah-fu, Gordon, 曹華富 January 1979 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
1256

Meso-Scale Model for Simulations of Concrete Subjected to Cryogenic Temperatures

Masad, Noor Ahmad 16 December 2013 (has links)
Liquefied natural gas (LNG) is stored at a cryogenic temperatures ≤ -160°C and around atmospheric pressure to insure the minimum storage volume in tanks. The demand for LNG has been increasing as a primary source of energy. Therefore, there is significant interest in the construction of LNG tanks to achieve low cost and safe storage. Three systems are typically used to store LNG: single containment, double containment, and full containment. Concrete is used in these containment systems, and consequently, understanding concrete behavior and properties at cryogenic temperatures is important. The research documented in this thesis deals with computational analysis of the behavior of concrete subjected to cryogenic temperatures. The analysis focuses on the effect of aggregate sizes, coefficient of thermal expansion, volume fraction, and the shape of aggregate on damage of concrete subjected to cryogenic temperatures. The analysis is performed by developing a computational model using the finite element software ABAQUS. In this model, concrete is considered as a 3- phase composite material in a meso-scale structure: mortar matrix, aggregate, and interfacial transmission zone (ITZ). The Concrete Damage Plasticity model in ABAQUS is used to represent the mortar and ITZ phases of concrete. This model has the advantage of accounting for the effect of temperature on material properties. The aggregate phase is modeled as a linear-elastic material. The model parameters are selected based on comprehensive literature review of material properties at different temperatures. The finite element results provide very useful insight on the effects of concrete mixture design and properties on resistance to damage. The most important factor that affected damage development was the difference in the coefficient of thermal expansion between the mortar and aggregates. Models in which the mortar and aggregate had close values of positive coefficients experienced less damage. The model with irregular shape particles experienced more localized damage than the model with circular shape particles. The model was successful in demonstrating the effect of using air entrained concrete in reducing damage. The damage results predicted by the model for air entrained and non-air entrained concrete are validated by comparing them with experimental data from the literature. The analysis validated the capabilities of the mode in simulating the effect of reduction in temperature on damage. The modeling results and the findings from the literature review were used to put forward recommendations regarding the characteristics of concrete used in LNG storage.
1257

Transfer and development length of 06-inch diameter prestressing strand in high strength lightweight concrete

Meyer, Karl F. 05 1900 (has links)
No description available.
1258

Repair of prestressed concrete bridge girders for shear

Lemay, Lionel. January 1986 (has links)
No description available.
1259

The structural, serviceability and durability performance of variable density concrete panels

Saevarsdottir, Thorbjoerg January 2008 (has links)
Conventional concrete is a poor insulating material but has good thermal mass, while lightweight concrete provides good insulation at the price of thermal mass. Precast concrete wall systems have not been widely used in residential homes due to poor thermal and acoustic performance, despite being high quality products that are easy to construct. The variable density concrete panel was designed to combine good thermal storage, insulation and high quality precast concrete. It is produced from a single concrete mix which is vibrated to get a lightweight top layer and a normal/heavyweight bottom layer. The lightweight layer is the wall exterior, having low thermal conductivity providing good thermal insulation while the normal/heavyweight layer is the dense wall interior, having high specific heat to provide good thermal mass and sufficient strength for construction handling and to withstand service loads. The intention of this research was to estimate the hardened performance; that is the structural, serviceability and durability performance of the variable density concrete panel. Further developments to the mix design were made where the fresh properties were measured and thermal performance estimated on hardened specimens. Most of the major technical concerns were proved not being as severe as first thought, making the production of variable density concrete panels promising. To ensure that the variable density concrete would stratify, the concrete mix had to have defined fresh properties. Defined rheological ranges gave a good indication of the stratification potential, but the degree of stratification was also found to be dependent on the intensity and time of vibration. Slump flow had to be within a certain range to achieve good stratification but this alone did not guarantee stratification. Variable density concrete was found to have adequate strength capacity both in axial compression and in tension for likely service loads but the strength required to withstand handling loads at early ages was not assessed. The strength of the variable density concrete was found to be affected by several factors such as; degree of stratification, relative strength and thickness of the layers, curing environment and amount of defects. As the stratification of the concrete increased the thermal insulation improved whereas the strength decreased. Warping was found not to significantly affect the serviceability of panels despite differential shrinkage within the element. The amount of warping was mainly related to the degree of stratification. Warping decreased with better stratification as more stress and strain was relieved in the lightweight layer. The lightweight concrete was significantly weaker as well as being less stiff than the structural concrete and therefore creeps to follow the structural concrete. The thermal properties aimed for were generally not reached, but these mixes were not designed to optimise the thermal performance and were tested before the concrete was fully dried. This increased thermal conductivity and therefore reduced the measured R-values. Stratified concrete had good absorption resistance, poor permeability properties and was highly porous. If the concrete was over-vibrated it tended to have a rough surface finish that would require a coating. Delamination of the panels was not assessed in this research but is a likely mode of failure.
1260

An analysis of the effect of the Botswana Bureau of Standards Certification on buyer decision on pre-cast concrete products in Gaborone, Botswana / Denny Mweetwa

Mweetwa, Denny January 2005 (has links)
For a pre-cast concrete manufacturing company to obtain a Botswana Bureau of Standards (BOBS) certification time, money and effort have to be spent and yet it is not known whether the consumers will use the BOBS certification as a buying decision factor. The Botswana Bureau of Standards certified pre-cast concrete manufacturing companies have to comply with rigorous inspections to ensure that standards are maintained. Competition in the concrete manufacturing industry is contested by certified companies and uncertified companies and yet the market is shared amongst these players. This dissertation will endeavour to analysis the effects of Botswana Bureau of Standards certification on buyer decision on pre-cast concrete products in Gaborone Botswana. Therefore, the research findings will establish whether BOBS certification can be used as marketing tool. A sample of forty was drawn from the population in Gaborone to represent the whole of Botswana. Date was collected using both semi-structured and structured questionnaires. Responses were sorted according to similarities and then interpreted. Results in this research indicated that BOB certification influences concrete consumers' decisions. It was also indicated that BOB certification is actually a marketing tool that sways positively concrete products buyers' decisions. Therefore, it was recommended that concrete manufacturers should exploit this marketing tool to gain a larger market share. Those concrete products manufacturers whose products are not certified should consider this marketing tool in their marketing strategy in order to remain competitive. BOBS must also launch a massive public awareness to popularise the use of the certification by the manufacturers. Lastly, It is recommended that the Botswana Government must continue supporting BOBS to improve quality standards in the country. / (MBA) North-West University, Mafikeng Campus, 2005

Page generated in 0.0348 seconds