• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 518
  • 154
  • 93
  • 61
  • 53
  • 31
  • 14
  • 13
  • 11
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 1131
  • 284
  • 283
  • 133
  • 118
  • 101
  • 90
  • 88
  • 84
  • 84
  • 68
  • 61
  • 61
  • 53
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Modeling of Direct Contact Condensation With OpenFOAM

Thiele, Roman January 2010 (has links)
Within the course of the master thesis project, two thermal phase change models for direct contact conden-sation were developed with different modeling approaches, namely inter-facial heat transfer and combustionanalysis approach. After understanding the OpenFOAM framework for two phase flow solvers with phase change capabilities, a new solver, including the two developed models for phase change, was implemented under the name of interPhaseChangeCondenseTempFoam and analyzed in a series of 18 tests in order to determine the physical behavior and robustness of the developed models. The solvers use a volume-of-fluid (VOF) approach withmixed fluid properties. It has been shown that the approach with inter-facial heat transfer shows physical behavior, a strong timestep robustness and good grid convergence properties. The solver can be used as a basis for more advanced solvers within the phase change class.
402

Modeling of Direct Contact Condensation With OpenFOAM

Thiele, Roman January 2010 (has links)
Within the course of the master thesis project, two thermal phase change models for direct contact conden-sation were developed with different modeling approaches, namely interfacial heat transfer and combustionanalysis approach.After understanding the OpenFOAM framework for two phase flow solvers with phase change capabilities,a new solver, including the two developed models for phase change, was implemented under the name ofinterPhaseChangeCondenseTempFoam and analyzed in a series of 18 tests in order to determine the physicalbehavior and robustness of the developed models. The solvers use a volume-of-fluid (VOF) approach withmixed fluid properties.It has been shown that the approach with inter-facial heat transfer shows physical behavior, a strong timestep robustness and good grid convergence properties. The solver can be used as a basis for more advancedsolvers within the phase change class.
403

Efficient Dispersion of Coated Silver Nanoparticles in the Polymer Matrix

Ellison, Jordan, Wykoff, Greg, Paul, Anita, Mohseni, Ray, Vasiliev, Aleksey 05 April 2014 (has links)
Silver-polymer composite material containing highly dispersed silver nanoparticles (AgNPs) of 20-100. nm diameter can be obtained from bare nanosilver. The synthesis consists of three steps. The first step is modification of AgNPs by 2-aminoethanethiol. Second, polyacrylic acid is bonded to the silver 2-aminoethanethiolate by the carbodiimide method. Then esterification of the remaining carboxyl groups of the product by methanol results in formation of a stable colloidal dispersion of AgNPs in the polymer matrix. The method allows obtaining of nanocomposites with silver contents up to 1.4. wt%.
404

CFD Analysis of Aspirator Region in a B&W Enhanced Once-Through Steam Generator

Spontarelli, Adam Michael 07 June 2013 (has links)
This analysis calculates the velocity profile and recirculation ratio in the aspirator region of an enhanced once-through steam generator of the Babcock & Wilcox design. This information is important to the development of accurate RELAP5 models, steam generator level calculations, steam generator downcomer models, and flow induced vibration analyses. The OpenFOAM CFD software package was used to develop the three-dimensional model of the EOTSG aspirator region, perform the calculations, and post-process the results. Through a series of cases, each improving upon the modeling accuracy of the previous, insight is gained into the importance of various modeling considerations, as well as the thermal-hydraulic behavior in the steam generator downcomer. Modeling the tube support plates and tube nest is important for the accurate prediction of flow rates above and below the aspirator port, but has little affect on the aspirator region itself. Modeling the MFW nozzle has minimal influence on the incoming steam velocity, but does create a slight azimuthal asymmetry and alter the flow pattern in the downcomer, creating recirculation patterns important to inter-phase heat transfer. Through the development of a two-phase solution that couples the aspirated steam and liquid feedwater, it was found that the ratio of droplet surface area to volume plays the most important role in determining the rate of aspiration. Calculations of the velocity profile and recirculation ratio are compared against those of historical calculations, demonstrating the possibility that these parameters were previously underpredicted. Such a conclusion can only be confidently made once experimental data is made available to validate the results of this analysis. / Master of Science
405

Using Droplet Induced Deformations in Polymeric Functional Materials for Heat and Mass Transport Modulation

January 2019 (has links)
abstract: Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation. In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally ‘refreshing’ the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2019
406

Predictability of an atmosphere with large-scale moisture patterns.

Salstein, David Alan January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Meteorology. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 146-152. / Ph.D.
407

Condensation of terephthalaldehyde and hydroxyacetophenones

Bonelli, Ernest John 01 January 1959 (has links)
Organic pigments were the source of coloring matters used by man until comparatively recent times. It is to be presumed that the first steps in the use of these pigments no dyes resulted from the accidental staining of the skin or fabric by a vegetable material. Prehistoric man, in order to decorate his implements or his person, or even to make records of his mode of life, used the materials with which he came in daily contact. Coloring materials included earth and vegetable substances found in flowers, seeds, berries, nuts, bark, wood, and roots, and less readily available coloring materials such as those of the heavy metals and those of animal origin. In addition to his knowledge of dyestuffs prehistoric man also developed a knowledge of tanning. He found that some of the vegetation that provided him with coloring matter would also preserve the skins he removed from the animals he killed as food and in doing so would render them suitable for clothing. Shortly after the preparation of the first synthetic dyestuff, the investigation of the natural yellow coloring matters was undertaken by Herzig. Herzig studied quercetin, derived from quercitron bark, and fisetin, which is present in young fuatic. About the same period, von Kostanecki submitted to examination chrysin, a coloring matter which had been isolated from the bud of the common popular. From the properties of this substance and the fact that when hydrolyzed it yields acetophenone and phloroglucinol, von Kostanecki represented it as a dihydroxy phenyl benzo-α-pyrone (I). von Kostanecki designated the mother substance of chrysin as being flavone (II), whereas the mother substance of fisetin (III) was flavonol (IV). The preparation of terephthalates was investigated in this work. The two methods considered were: (1) The condensation of terephthalaldehyde with the benzoates of o-hydroxyacetophenone, o,p-hydroxyacetophenone and o,m,p-trihydroxyacetophenone respectively in dry ethyl acetate using dry hydrogen chloride as the condensing agent, with subsequent debenzylation with 10 percent sodium hydroxide in an atmosphere of nitrogen. (2) The condensation of terephthalaldehyde with o-hydroxyacetophenone and o,p-hydroxyacetophenone using sodium hydroxide as the condensing agent. The dying properties of the compounds were investigated by precipitating the hydroxides of chromium, aluminum and iron salts as modante on woolen patches. The dyes of the latter two mordante were water fast, whereas those of the chromium mordent were not.
408

Investigating the Phase Transitions of lower n-alkanes – pentane, hexane, and heptane - in a supersonic nozzle

Ogunronbi, Kehinde Emeka 02 October 2019 (has links)
No description available.
409

Multidimensional Modeling of Condensing Two-Phase Ejector Flow

Colarossi, Michael F 01 January 2011 (has links) (PDF)
Condensing ejectors utilize the beneficial thermodynamics of condensation to produce an exiting static pressure that can be in excess of either entering static pressure. The phase change process is driven by both turbulent mixing and interphase heat transfer. Semi-empirical models can be used in conjunction with computational fluid dynamics (CFD) to gain some understanding of how condensing ejectors should be designed and operated. The current work describes the construction of a multidimensional simulation capability built around an Eulerian pseudo-fluid approach. The transport equations for mass and momentum treat the two phases as a continuous mixture. The fluid is treated as being in a non-thermodynamic equilibrium state, and a modified form of the homogenous relaxation model (HRM) is employed. This model was originally intended for representing flash-boiling, but with suitable modification, the same ideas could be used for condensing flow. The computational fluid dynamics code is constructed using the open-source OpenFOAM library. Fluid properties are evaluated using the REFPROP database from NIST, which includes many common fluids and refrigerants. The working fluids used are water and carbon dioxide. For ejector flow, simulations using carbon dioxide are more stable than with water. Using carbon dioxide as the working fluid, the results of the validation simulations show a pressure rise that is comparable to experimental data. It is also observed that the flow is near thermodynamic equilibrium in the diffuser for these cases, suggesting that turbulence effects present the greatest challenge in modeling these ejectors.
410

Lattice and Momentum Space Approach to Bound States and Excitonic Condensation via User Friendly Interfaces

Jamell, Christopher Ray 20 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, we focus on two broad categories of problems, exciton condensation and bound states, and two complimentary approaches, real and momentum space, to solve these problems. In chapter 2 we begin by developing the self-consistent mean field equations, in momentum space, used to calculate exciton condensation in semiconductor heterostructures/double quantum wells and graphene. In the double quantum well case, where we have one layer containing electrons and the other layer with holes separated by a distance $d$, we extend the analytical solution to the two dimensional hydrogen atom in order to provide a semi-quantitative measure of when a system of excitons can be considered dilute. Next we focus on the problem of electron-electron screening, using the random phase approximation, in double layer graphene. The literature contains calculations showing that when screening is not taken into account the temperature at which excitons in double layer graphene condense is approximately room temperature. Also in the literature is a calculation showing that under certain assumptions the transition temperature is approximately \unit{mK}. The essential result is that the condensate is exponentially suppressed by the number of electron species in the system. Our mean field calculations show that the condensate, is in fact, not exponentially suppressed. Next, in chapter 3, we show the use of momentum space to solve the Schr\"{o}dinger equation for a class of potentials that are not usually a part of a quantum mechanics courses. Our approach avoids the typical pitfalls that exist when one tries to discretize the real space Schr\"{o}dinger equation. This technique widens the number of problems that can presented in an introductory quantum mechanics course while at the same time, because of the ease of its implementation, provides a simple introduction to numerical techniques and programming in general to students. We have furthered this idea by creating a modular program that allows students to choose the potential they wish to solve for while abstracting away the details of how the solution is found. In chapter 4 we revisit the single exciton and exciton condensation in double layer graphene problems through the use of real space lattice models. In the first section, we once again develop the equations needed to solve the problem of exciton condensation in a double layer graphene system. In addition to this we show that by using this technique, we find that for a non-interacting system with a finite non-zero tunneling between the layers that the on-site exciton density is proportional to the tunneling amplitude. The second section returns to the single exciton problem. In agreement with our momentum space calculations, we find that as the layer separation distance is increased the bound state wave function broadens. Finally, an interesting consequence of the lattice model is explored briefly. We show that for a system containing an electron in a periodic potential, there exists a bound state for both an attractive as well as repulsive potential. The bound state for the repulsive potential has as its energy $-E_0$ where $E_0$ is the ground state energy of the attractive potential with the same strength.

Page generated in 0.0992 seconds