Spelling suggestions: "subject:"condensed"" "subject:"dondensed""
231 |
From Order to Disorder in High Temperature SuperconductorsVestergren, Anders January 2004 (has links)
<p>Phase transitions in a number of models related to hightemperature superconductors are investigated, using scalingmethods and Monte Carlo simulations. This thesis considers twomain topics.</p><p>The first topic is phase transitions, phase diagrams, andvortex motion in high temperature superconductors at finitetemperature, subject to magnetic fields and disorder. We studya vortex glass model at finite temperature, with stronguncorrelated vortex pinning and a magnetic field. We find thatthe vortex glass exists at finite temperature and calculate thecritical exponents of the transition. We also investigate hightemperature superconductors with columnar disorder in zero andapplied magnetic fields. Some of these studies are alsorelevant for the superfluid to Mott insulator transition ofbosons in two dimensions. We find that the unscreened Boseglass transition belongs to a new universality class. Wecalculate the critical exponents of the superconductingtransition with columnar defects in zero applied magneticfield. The transverse Meissner transition is studied, and wefind an exotic universality class with a correlation volumethat is infinitely anisotropic in all directions.</p><p>The second topic is confinement-deconfinement transitions incompact Abelian Higgs models. We develop a new order parameter,related to a large Wilson loop for fractionalized charges, anduse it to study the concept of topological order. Thesetransitions may be relevant for strongly correlated electronsin two dimensions.</p>
|
232 |
Transport Critical Currents in YBaCuO-based Coated Conductors: Angular, Magnetic Field, and Temperature DependenciesTravaglini, Samuel M 01 August 2007 (has links)
High-temperature superconductivity has been a focus of much study over the past 20 years, particularly within the cuprate class of superconductors. The effectiveness of these cuprate superconductors is limited by factors including the formation of vortices within the superconductor, orientation within external magnetic fields, the strength of these magnetic fields, temperature, and whether any doping agents have been used. Any of these factors individually can affect the transport critical current levels. In this research, YBaCuO and NdBaCuO-based coated conductors were studied in a liquid-nitrogen-cooled environment at either 77 K or 65 K. Field levels were varied between 0 T and 8 T while orientation was held constant, as well as orientation varying through 140 degrees of rotation while the field was held constant. From the data, n-values (in the voltage-current power-law relation V / In) and values (a power-law relation Jc / H) were calculated, and plots of angular and field dependencies were made. The results showed parallels between doping and improved pinning ability of vortices in addition to an unsuspected weak variation of n-values in relation to orientation within constant magnetic fields.
|
233 |
Dislocations in a vortex lattice and complexity of chlamydomonas ciliary beatingAmnuanpol, Sitichoke. January 2009 (has links)
Thesis (Ph. D.)--Syracuse University, 2009. / "Publication number: AAT 3385846 ."
|
234 |
Optimization and exact sampling algorithms for simulations of glassy materialsThomas, Creighton Kays. January 2009 (has links)
Thesis (Ph. D.)--Syracuse University, 2009. / "Publication number: AAT 3385840."
|
235 |
Numerical study of topological insulators and semi-metalsChu, Ruilin., 储瑞林. January 2011 (has links)
Topological insulators(TIs) constitute a novel state of quantum matter which possesses non-trivial topological properties. Although discovered only in the recent few years, TIs have attracted intensive interest among the community of condensed matter physics and material science. TIs are insulating in the bulk but have conductive gapless edge or surface states on the boundaries, which have their origin in the nontrivial bulk band topology that is induced by the strong spin-orbital interactions in the materials. Existing in all dimensions, TIs exhibit a variety of exotic physics such as quantum spin Hall effect, momentum-spin locked surface states, Dirac fermion transport, quantized anomalous Hall effect, Majorana fermions, etc. In this thesis,
I study the transport properties of 2D and 3D TIs by numerical approaches. As an introduction, a brief review of TIs is given. A detailed description of the numerical methods is also presented. The results can be summarized in four aspects. First, disorder is found be able to induce a non-trivial TI from an originally trivial band insulator, where the conductance of a two terminal device drops to nearly zero and then rises to form an anomalous plateau as disorder strength is increased, and finally all the states become localized. The real space Chern number calculation as well as the effective medium theory suggests that disorder is fundamentally responsible for the emerging of the extended helical edge states in this system. We also present a levitation and pair annihilation picture of the extended states for this model. Second, by making the 2D TIs into singly connected quantum point contacts(QPCs), I show a coherent and fast Aharonov-Bohm oscillation of conductance caused by the quantum interference of the helical edge states. This oscillation not only happens against weak magnetic field but also against the gate voltage in the zero-field condition.
This results in a giant edge magnetoresistance of the device in weak magnetic fields. The amplitude of the magnetoresistance is controllable by adjusting either the
QPCs' slit width or the interference loop size in the device. The oscillation is found robust against disorder. Third, by applying a uniform spin-splitting Zeeman field in the bulk of the 3D TI whose surface states can be viewed as massless Dirac fermions,
I find chiral edge states on the gapped surfaces of the 3D TI, which can be considered as interface states between domains of massive and massless Dirac fermions.
Effectively these states are result of splitting of a perfect interface conducting channel. This picture is confirmed by the Landauer-B?ttiker calculations in four-terminal Hall bars. Finally, I propose the concept of topological semi-metals. By calculating the local density of states on the surfaces, I demonstrate that surface states and the gapless
Dirac cone already exist in the system although the bulk is not gapped. We show how the uni-axial strain induces an insulating band gap and turn the semi-metal into true TI. We predict existence of quantum spin Hall effect in the thin films made of these materials, which can be significantly enhanced by disorders. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
236 |
Exact solutions for electron pairing models with spin-orbit interactions and Zeeman couplingLiu, Jia, 刘佳 January 2013 (has links)
Although a number of methods with appropriate approximations, such as mean-field theory, local density approximation, and tight-binding method have been well developed and widely used in solid state physics, they possess strong limitations, and thus physicists never stop trying to find methods that could rigorously solve the models of condensed matter systems. This thesis presents several new exact solutions for electron pairing models with spin-orbit interactions and Zeeman coupling, which have not been studied before.
First, a type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson’s previous work for 2D cases. Based on the exact solutions for the electron pairing model with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p+ip wave and the ground state possesses time-reversal symmetry, which are expected by the meanfield theory. And the difference is that such peroration from our framework is valid for any strength of the pairing interactions. Intriguingly, how Majorana fermions can emerge is also elaborated in a ribbon system as well. Condensation energy and critical magnetic field are calculated in two systems with the exact solutions, and compared with the relevant results achieved by the mean-field theory, the differences between our results and the mean-field theory show the significance of the work for exact solutions.
Secondly, we generalize our scenario to 3D cases. Several remarks of the 3D case are given following the significant results from the 2D cases. And an unconventional type of Fulde-Ferrel-Larkin-Ovchinnikov ground state is revealed exactly, in which the center-of-mass momentum of the fermion pair is proportional to the Zeeman field. As a by-product, a similar Fulde-Ferrel-Larkin-Ovchinnikov state is also disclosed when the magnetic field is in the same plane of k for 2D case. In addition, applying the transformative Richardson ansatz in bosonic system, we elaborate on the drifting effect of the Zeeman field on the spin-orbit-coupled Bose-Einstein condensed matter as well.
Finally, we discuss the application of the exact solutions in quantum entanglement quantification. The entanglement monotone concurrence is calculated with exact solutions for two models. It is found to be a smooth function of pairing interactions, as expected. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
237 |
Random walks on a fluctuating latticeLapeyre, Gerald John January 2001 (has links)
In recent years, studies of diffusion in random media have been extended to include the effects of media in which the defects fluctuate randomly in time. Typically, the diffusive motion of particles in a static medium persists when the medium is allowed to fluctuate, with the diffusivity (diffusion constant) D depending on the character of the fluctuations. In the present work, we study random walks on lattices in which the bonds connecting vertices open and close randomly in time, and the walker is not allowed to cross a closed bond. Variations of the model studied here have been used to model the diffusion of CO through myoglobin, the transport of ions in polymer solutions, and conduction in hydrogenated amorphous silicon. The major objective in analyzing these systems is to find efficient methods for computing the diffusivity. In this dissertation, we focus mainly on methods of computing the diffusivity in our model. In addition, we study the critical behavior of the model and present a demonstration, valid for a restricted range of model parameters, that the distribution of the displacement converges in time to a Gaussian with width D. To compute the diffusivity, we use a numerical renormalization group (RG) method, power series expansions in model parameters, and Monte Carlo simulations. We choose a model with two parameters characterizing the bond fluctuations--the time scale of fluctuations tau and the mean open-bond density p. We calculate a series expansion of the diffusivity to about 10th order in the parameter nu = exp(.1/τ) on the hypercubic lattice Zᵈ for d = 1, 2, 3, as well as on the Bethe lattice. We compute the same power series expansion to 3rd order in ν for arbitrary d. We compute estimates of the diffusivity on the Bethe lattice using the RG methods and show by comparison to Monte Carlo data that the RG provides excellent quantitative predictions of D when τ is not too large.
|
238 |
Numerical simulation of the random nucleation and growth model in thin filmsWang, George 13 November 2015 (has links)
<p>We are interested in the transition from an amorphous material to a polycrystalline structure. Previous research done by our group introduced a modified Random Nucleation and Growth model to describe this phenomenon. Besides the nucleation rate, its importance in the grain size distribution (GSD) having long been established, we introduced an effective time dependent growth rate, postulated the analytic form, and ascertained its effect on the GSD to match experimental data. Not only would we like to continue to substantiate this form, we wish also to determine how this rate depends on the fundamental parameters of the model. To achieve this, we have developed a numerical simulation in two dimensions, based on the premises of the model, to simulate crystallization in thin films. Not only does the simulation produce data that matches the analytical results of the nucleation rate and volume fraction available for nucleation, it also fits well with the postulated growth rate. This suggests the validity of the introduced effective growth rate and the functionality of the simulation for studying this process. </p>
|
239 |
Non-equilibrium dynamics of artificial quantum matterBabadi, Mehrtash 15 October 2013 (has links)
The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant $s$-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. / Physics
|
240 |
Microscopic Properties of the Fractional Quantum Hall EffectKou, Angela 10 April 2014 (has links)
The fractional quantum Hall effect occurs when an extremely clean 2-dimensional fermion gas is subject to a magnetic field. This simple set of circumstances creates phenomena, such as edge reconstruction and fractional statistics, that remain subjects of experimental study 30 years after the discovery of the fractional quantum Hall effect. This thesis investigates the properties of excitations of the fractional quantum / Physics
|
Page generated in 0.0726 seconds